
Introduction to NLP
with R

1
Nicolas Attalides

Workshop – 22nd June 2021

https://www.linkedin.com/in/nicolas-attalides

Who am I?

2

 Name: Nicolas Attalides

 Coding in since: 2005 (yes that’s before RStudio!)

 Profession: Principal Data Scientist and trainer (6+ yrs.)

 Education: PhD in Statistical Science from UCL (2015)

 R Status: A never-ending evolving R dinosaur

 Hobbies: Tennis and coding (not at the same time)

Wi-Fi

 Network Name: N/A

 Password: N/A

Resources

 R (version 3.6.3)

 RStudio (version 1.4.1106)

Packages

 tidyverse (version 1.3.0)

 tidytext (version 0.3.1)

Data

Download the files from:

https://github.com/nattalides/Barcel
onaR_workshop_Introduction_to_NL
P_with_R/tree/master/data

3

Workshop Setup:

https://github.com/nattalides/BarcelonaR_workshop_Introduction_to_NLP_with_R/tree/master/data

What is NLP?

4

Natural language processing (NLP) is a field within linguistics and

artificial intelligence that enables computers to understand and

interact with human language.

Some examples where NLP can be found are virtual assistants like

Siri or Alexa, automatic spell checking, word autocompletion and

machine translation such as Google Translate.

Topics

5

 Workshop aim:

Learn the basics of how to do text mining and sentiment analysis as well

as some background theory on NLP.

 Topics:

• Tokenization and stop words

• Sentiment analysis

• Term Frequency - Inverse Document Frequency (TF-IDF)

6

Data for Coding Examples

Script lines by character from the

original Star Wars movies (also includes

other script metadata)

column description column description

line The line of the script length Number of characters

movie Which star wars episode ncap Number of capitalised words

title Movie title nexcl Number of exclamation points

character Character’s name nquest Number of question marks

dialogue Character’s text nword Number of words

7

Live Coding Example 1

1. Load the star_wars_scripts.rds dataset

2. Which movie has the most lines?

3. Which movie has the most

characters?

4. Summarise the lines, exclamations,

questions, words per character per

movie and sort by words

(descending)

Live Coding Example 1

8

library(tidyverse)

Example 1

Load the star_wars_scripts.rds dataset

df <- readRDS("data/star_wars_scripts.rds")

Which movie has the most lines?

df %>%

group_by(movie) %>%

summarise(line_count = n())

Live Coding Example 1

9

Which movie has the most characters?

df %>%

group_by(movie) %>%

summarise(character_count = n_distinct(character))

Summarise the lines, exclamations, questions, words per character
per movie and sort by words (descending).

res <- df %>%

group_by(movie, character) %>%

summarise(line_count = n(),

total_excl = sum(nexcl),

total_quest = sum(nquest),

total_words = sum(nword)) %>%

arrange(desc(total_words))

Live Coding Example 1

10

Tokenization is the process of breaking up a

text into individual tokens. A token is a unit of

text that we use for text analysis.

Most commonly tokens are single words. We

will follow Hadley Wickham’s tidy data structure

and use the {tidytext} package to process our

data into a table with one-token-per-row

format – where a token is a single word.

11

Tokenization

Note: A token can be more complex such as a sentence,

a paragraph or a successive sequence of words, called an

n-gram. A special case of an n-gram is when we

tokenize by pairs of 2 consecutive words (n = 2) which we

call “bigrams”.

12

Tokenization

When analysing text we will come across words

that are not very meaningful. For example, in

English, particularly common words such as

“the”, “a”, “of”, “to” etc. are not useful for analysis.

We can remove them by using a list of words

called “stop words”. The {tidytext} package

contains a dataset of stop words from three

lexicons and can be accessed using the function

stop_words().
13

Stop words

14

Live Coding Example 2

1. Use {tidytext} to tokenize the star wars

scripts, where a token is a single word to

create a one-token-per-row data frame (also

remove the summary columns)

2. Remove the stop words and assign the data

frame to the object “tidy_script”

3. Find the top 5 words for all movies and

create a bar chart visualisation

4. Find the most common word used for all

the characters. What do you think is Yoda’s?

5. Create an awesome word cloud!

Images in workshop GitHub repo.

Live Coding Example 2

15

library(tidyverse)
library(tidytext)

Example 2

Load the star_wars_scripts.rds dataset
df <- readRDS("data/star_wars_scripts.rds")

Use {tidytext} to tokenize the star wars scripts, where a token is
a single word to create a one-token-per-row data frame.
Also remove summary columns.
tidy_script <- df %>%
select(-length, -ncap, -nexcl, -nquest, -nword) %>% # Remove summary cols
unnest_tokens(output = word, input = dialogue) # Tokenise

Remove the stop words from the data frame and create “tidy_script” object.
tidy_script <- tidy_script %>%
anti_join(stop_words, by = "word")

Live Coding Example 2

16

Find the top 5 words for all movies and create a bar chart
visualisation.

tidy_script %>%

count(word, movie) %>%

ungroup() %>%

group_by(movie) %>%

top_n(5) %>%

ungroup() %>%

ggplot(aes(x = word, y = n, fill = movie)) +

geom_col(show.legend = FALSE) +

labs(y = NULL, x = NULL) +

facet_wrap(~movie, ncol = 3, scales = "free_y") +

coord_flip()

Live Coding Example 2

17

Live Coding Example 2

18

Find the most common word used for all the characters.

What do you think is Yoda's?

res <- tidy_script %>%

count(word, character) %>%

ungroup() %>%

group_by(character) %>%

top_n(1) %>%

ungroup() %>%

arrange(desc(n))

Live Coding Example 2

19

Create an awesome word cloud!
devtools::install_github("lchiffon/wordcloud2")
Might require some package installation steps
library(wordcloud2)

plot_data <- tidy_script %>%
count(word) %>%
ungroup() %>%
mutate(word = factor(word),

freq = as.numeric(n)) %>%
arrange(desc(freq))

If it fails to render, then try again
wordcloud2(plot_data, size = 1, figPath="data/vader.png")

wordcloud2(plot_data, size = 1, figPath="data/yoda.png")

Live Coding Example 2

20

It is easy for humans to understand the

emotional content of a piece of text and

interpret it as something positive or negative.

We can even describe some text as expressing

anger, disgust or surprise.

21

Sentiment analysis

Sentiment analysis, which is also known as opinion mining, is the

process where we aim to attach emotional content to a piece of

text in a programmatic way.

The most common method to analyse the sentiment of a piece

of text is to add up the individual sentiment value of each of the

words that make up the text.

To achieve this, we will use one of the three general purpose

sentiment lexicons of the {tidytext} package, namely the

AFINN lexicon.

22

Sentiment analysis

AFINN reference: http://www2.imm.dtu.dk/pubdb/pubs/6010-full.html

23

Live Coding Example 3

1. Use {tidytext} and create the data frame

“afinn” of the AFINN sentiment lexicon

2. Inner join the AFINN sentiment lexicon to

“tidy_script” from Example 2 and calculate the

total sentiment score per movie per line

3. Attach the sentiment scores to the original star

wars script dataset. What do you think is the

most negative script line from all movies?

4. Who is the most negative character of all

movies?

5. Visualise the sentiment score changes line by

line for each movie

Live Coding Example 3

24

Use {tidytext} and create the data frame “afinn” of the AFINN
sentiment lexicon

afinn <- get_sentiments("afinn")

Inner join the AFINN sentiment lexicon to tidy_script from Example 2

and calculate the total sentiment per movie per line

sentiment_script <- tidy_script %>%

inner_join(afinn, by = "word") %>%

group_by(movie, line) %>%

mutate(sentiment = sum(value)) %>%

ungroup() %>%

select(-word, -value) %>%

distinct()

Live Coding Example 3

25

Some sample extracts from AFINN Total sentiment per movie per line

Live Coding Example 3

26

Attach the sentiment scores to the original star wars script dataset.

What do you think is the most negative script line from all movies?

df <- df %>%

inner_join(sentiment_script)

Who is the most negative character of all movies?

res <- df %>%

group_by(character) %>%

summarise(total_sentiment = sum(sentiment)) %>%

ungroup() %>%

arrange(total_sentiment)

Live Coding Example 3

27

Sentiment score per script line per movie

And the award for the most negative
character goes to…

And the award for the most
negative script line from all movies
goes to…

Live Coding Example 3

28

Visualise the sentiment score changes line by line for each movie

df %>%

ggplot(aes(line, sentiment, fill = movie)) +

geom_col(show.legend = FALSE) +

theme(axis.text.x=element_blank(),

axis.ticks.x=element_blank()) +

facet_wrap(~movie, ncol = 1)

Live Coding Example 3

29

Q: Lets say we have a document, how could we quantify what it is about?

A: Analyse the words that make up the document!

Term Frequency (TF) how frequently does a term appear in the document

Inverse Document Frequency (IDF) adjust the weight of commonly used

terms (such as “the”) by decreasing the word’s importance

Combining the two measures by multiplying them results in a TF-IDF score

which reflects the frequency of a term adjusted for how rarely it is used.

30

Term Frequency - Inverse Document Frequency

31

Live Coding Example 4

1. Use {tidytext} to tokenize the star

wars scripts, where a token is a single

word to create a one-token-per-row

data frame. Also remove summary

columns. Then attach the TF-IDF

score of each word for each movie

using the bind_tf_idf() function of

{tidytext} and extract the top 10

words per movie

Live Coding Example 4

32

Use {tidytext} to tokenize the star wars scripts, where a token is
a single
word to create a one-token-per-row data frame. Also remove summary
columns.
Then attach the TF-IDF score of each word for each movie
and extract the top 10 words per movie
tf_idf_script <- df %>%

select(-length, -ncap, -nexcl, -nquest, -nword) %>%
unnest_tokens(output = word, input = dialogue) %>%
count(movie, word, sort = TRUE) %>%
bind_tf_idf(word, movie, n) %>%
ungroup() %>%
group_by(movie) %>%
top_n(10) %>%
arrange(movie, desc(tf_idf))

Live Coding Example 4

33

34

Other resources – Text mining with R

Get the book online at: https://www.tidytextmining.com/

https://www.tidytextmining.com/

Thank you to our sponsors and partners!

35

