

Workshop – 23rd November 2021

Who am I?

Name: Nicolas Attalides

- Coding in R since: 2005 (yes that's before RStudio!)
- Profession: Principal Data Scientist and trainer (6+ yrs.)
- Education: PhD in Statistical Science from UCL (2015)
- R Status: A never-ending evolving R dinosaur
- Hobbies: Tennis and coding (not at the same time)

Workshop Setup:

Setup script

https://github.com/nattalides/Barc elonaR_workshop_Introduction_to _Machine_Learning

Resources

- ▶ R (version 3.6.3)
- RStudio (version 1.4.1106) R Studio

Packages

- tidyverse (version 1.3.1)
- tidymodels (version 0.1.3)

- rpart (version 4.1-15)
- randomForest (version 4.6-14)
- xgboost (version 1.4.1.1)
- + some optional packages for visualisations

What is Machine Learning?

exciting examples such as DeepMind's AlphaGo.

Machine Learning & R

There are many 😱 packages dedicated to machine learning that you

can install from CRAN. Some of the popular ones are {rpart},

{randomForest} and {xgboost}.

In this workshop we are going to use **{tidymodels}** which is a

framework package aiming to streamline ML tasks and unify the

interface of the various algorithms. It also follows the tidyverse principles.

Check out: <u>https://cran.r-project.org/web/views/MachineLearning.html</u>

Topics

Workshop aim:

Learn how to design, fit and evaluate a machine learning model to solve a specific problem.

Topics:

- Define the problem and evaluation metrics •
- Load, prepare and split the data to train and test sets
- Design the formula for the model •
- Choose an algorithm and fit a model •
- Predict and evaluate a fitted model

Define the problem

Machine Learning is commonly used to solve two types of problems:

- Regression This is when... what you are trying to predict (the target variable) is numeric, for example the number of units sold of a product.
 - Classification This is when... what you are trying to predict (the target variable) is categorical (or a class), for example "hot dog or not hot dog".

Types of learning

In Machine Learning there are different types of learning that can be done ... this depends on the available data and the outcome:

Туре	Description	Example					
Supervised	Target variable is known	Predict which customer is going to cancel their subscription service					
Unsupervised	Target variable is unknown	Group "similar" customers into categories					
Semi- supervised	Target variable is partially known	Detect credit card fraud					
Reinforcement Maximise a reward by ta		Win a game of chess					

Metrics for model performance

There are many ways that you can measure the performance of your model. Below is a list of some of the typical metrics used for regression and classification problems:

- Regression
 - MSE Mean Squared Error
 - RMSE Root Mean Squared Error
 - MAE Mean Absolute Error
 - R² A measure that is related to MSE and is scaled between 0 and 1

Classification

- Accuracy
- Precision
- Recall
- AUC Area Under the Curve

Load and prepare data

One of the most essential tasks (and usually the most time consuming – but sometimes can feel like a relaxing activity but can be equally frustrating) is ... **data cleaning**!

It is important that you **understand the data**! What are the

types? Any missing values? Is there correlation in your features?

A good Exploratory Data Analysis (EDA) is the best starting

point, otherwise...

Data – Used for live coding examples

The data that we will use during this workshop are:

Red wine quality of the Portuguese "Vinho Verde" wine which includes:

Physicochemical test results (such as PH) and quality assessment graded by experts - 0 (very bad) and 10 (very excellent)

DATASET CITATION: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Data Dictionary

- fixed acidity (tartaric acid g / dm³)
- volatile acidity (acetic acid g / dm³)
- citric acid (g / dm³)
- residual sugar (g / dm³)
- chlorides (sodium chloride g / dm³)
- free sulfur dioxide (mg / dm³)

- total sulfur dioxide (mg / dm³)
- density (g / cm³)
- ▶ pH
- sulphates (potassium sulphate g / dm³)
- alcohol (% by volume)
- quality (score between 0 and 10)

Live Coding Example 1 </>

For more practice datasets go to: <u>https://archive.ics.uci.edu/ml/index.php</u> Download the wine quality dataset from: https://github.com/nattalides/BarcelonaR_worksho p_Introduction_to_Machine_Learning/blob/master/ data/data.rds

- 1. Load and view the data.
- 2. Do a quick exploratory data analysis (EDA).
- 3. Fix column names.
- 4. Remove any missing values.
- 5. Split the data into:
 - a) Train set
 - b) Test set

Live Coding Example 1 </>

column names

• •	¢ fixed acidity	¢ volatile acidity	¢ citric acid	¢ residual sugar	¢ chlorides	free [‡] sulfur dioxide	total [‡] sulfur dioxide	¢ density	¢ pH	\$ sulphates	¢ alcohol	quality
1	7.4	0.700	0.00	1.90	0.076	11	34	0.9978	3.51	0.56	9.4	5
2	7.8	NA	0.00	2.60	0.098	25	67	0.9968	3.20	0.68	9.8	5
3	7.8	0.760	0.04	2.30	0.092	15	54	0.9970	3.26	0.65	9.8	5
4	11.2	0.280	0.56	1.90	0.075	17	60	0.9980	3.16	0.58	9.8	6
5	7.4	0.700	0.00	1.90	0.076	11	34	0.9978	3.51	0.56	9.4	5
6	7.4	NA	0.00	1.80	0.075	13	40	0.9978	3.51	0.56	9.4	5
7	7.9	0.600	0.06	1.60	0.069	15	59	0.9964	3.30	0.46	9.4	5
8	7.3	0.650	0.00	1.20	0.065	15	21	0.9946	3.39	0.47	NA	7
9	7.8	0.580	0.02	2.00	0.073	9	18	0.9968	3.36	0.57	9.5	7
10	7.5	NA	0.36	6.10	0.071	17	102	0.9978	3.35	020	10.5	5
11	6.7	0.580	0.08	1.80	0.097	15	65	0.9959	3.28	0.54	9.2	5
12	7.5	0.500	0.36	6.10	0.071	17	102	0.9978	3.35	0.80	10.5	5
13	5.6	0.615	000	1.60	0.089	16	59	0.99/3	3.58	0.52	9.9	5
14	7.8	0.610	0.29	1.60	0.114	9	29	0.9974	3.26	1.56	9.1	5

missing values

Live Coding Example 1 </>

A summary of the data frame

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide
Min. : 4.60	Min. :0.1200 M	1in. :0.000	Min. : 0.900	Min. :0.01200	Min. : 1.00
1st Qu.: 7.10	1st Qu.:0.3900 1	st Qu.:0.090	1st Qu.: 1.900	1st Qu.:0.07000	1st Qu.: 7.00
Median : 7.90	Median :0.5200 M	ledian :0.260	Median : 2.200	Median :0.07900	Median :14.00
Mean : 8.32	Mean :0.5275 M	lean :0.271	Mean : 2.539	Mean :0.08747	Mean :15.87
3rd Qu.: 9.20	3rd Qu.:0.6400 3	Brd Qu.:0.420	3rd Qu.: 2.600	3rd Qu.:0.09000	3rd Qu.:21.00
Max. :15.90	Max. :1.5800 M	lax. :1.000	Max. :15.500	Max. :0.61100	Max. :72.00
	NA's :3				
total sulfur di	oxide density	рН	sulphates	alcohol	quality
Min. : 6.00	Min. 🔪 :0.990)1 Min. :2.	7 40 Min. :0. 3	300 Min. : 8.4	0 Min. :3.000
1st Qu.: 22.00	1st Qu. 0.995	6 1st Qu.:3.	210 1st Qu.:0.5	500 1st Qu.: 9.5	0 1st Qu.:5.000
Median : 38.00	Median : 🔍 996	68 Median :3.	310 Median :0.6	200 Median :10.2	0 Median :6.000
Mean : 46.47	Mean :0.996	67 Mean :3.	311 Mean :0.6	581 Mean :10.4	3 Mean :5.636
3rd Qu.: 62.00	3rd Qu.:0.997	8 3rd Qu.:3.4	400 3rd Qu.:0.7	'300 3rd Qu.:11.1	0 3rd Qu.:6.000
Max. :289.00	Max. :1.003	Max. :4.0	010 Max. :2.0	0000 Max. :14.9	0 Max. :8.000
				NA'c •5	

missing values

Live Coding Example 1 </>

A correlation matrix of the data

	fixed acidity	volatil	e acidity	citric acid	residual sugar	chl	lorides	free sulfur	dioxide	total	sulfur dioxide	density	рН
fixed acidity	1.00000000		NA	0.67170343	0.114776724	0.093	3705186	-0.1	53794193		-0.11318144	0.66804729	-0.68297819
volatile acidity	NA		1	NA	NA		NA		NA		NA	NA	NA
citric acid	0.67170343		NA	1.00000000	0.143577162	0.203	3822914	-0.0	60978129		0.03553302	0.36494718	-0.54190414
residual sugar	0.11477672		NA	0.14357716	1.000000000	0.055	5609535	0.1	.87048995		0.20302788	0.35528337	-0.08565242
chlorides	0.09370519		NA	0.20382291	0.055609535	1.000	0000000	0.0	05562147		0.04740047	0.20063233	-0.26502613
free sulfur dioxide	-0.15379419		NA	-0.06097813	0.187048995	0.005	5562147	1.0	00000000		0.66766645	-0.02194583	0.07037750
total sulfur dioxide	-0.11318144		NA	0.03553302	0.203027882	0.047	7400468	0.6	67666450		1.00000000	0.07126948	-0.06649456
density	0.66804729		NA	0.36494718	0.355283371	0.200	0632327	-0.0	21945831		0.07126948	1.00000000	-0.34169933
рН	-0.68297819		NA	-0.54190414	-0.085652422	-0.265	5026131	0.0	70377499		-0.06649456	-0.34169933	1.00000000
sulphates	0.18300566		NA	0.31277004	0.005527121	0.371	1260481	0.0	51657572		0.04294684	0.14850641	-0.19664760
alcohol	NA		NA	NA	NA		NA		NA		NA	NA	NA
quality	0.12405165		NA	0.22637251	0.013731637	-0.128	8906560	-0.0	50656057		-0.18510029	-0.17491923	-0.05773139
	sulphates a	alcohol	qualit	y									
fixed acidity	0.183005664	NA	0.1240516	5									
volatile acidity	NA	NA	N	IA									
citric acid	0.312770044	NA	0.2263725	1									
residual sugar	0.005527121	NA	0.0137316	4									
chlorides	0.371260481	NA	-0.1289065	6									
free sulfur dioxide	0.051657572	NA	-0.0506560	6									
total sulfur dioxide	0.042946836	NA	-0.1851002	9									
density	0.148506412	NA	-0.1749192	3									
рН	-0.196647602	NA	-0.0577313	9									
sulphates	1.000000000	NA	0.2513970	8									
alcohol	NA	1	🗾 🖊	A									
quality	0.251397079	NA	1.00000000	0									

missing values

Live Coding Example 1 </>

library(tidyverse)
library(tidymodels)

Example 1

```
# Load and view the data.
df <- readRDS("data/data.rds")</pre>
```

View(df)

```
# Do some exploratory data analysis (EDA).
# 1. A summary of the data frame
df %>% summary
```

```
# 2. A correlation plot of the data
df %>% cor()
```


Live Coding Example 1 </>

3. Fix column names
colnames(df) <- df %>%
 colnames() %>% str_replace_all(pattern = " ", replacement = "_")

4. Remove any missing values
df <- df %>% drop_na()

df %>% summary()

fixed_acidity	volatile_acidit	y citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide
Min. : 4.600	Min. :0.1200	Min. :0.0000	Min. : 0.900	Min. :0.01200	Min. : 1.00	Min. : 6.00
1st Qu.: 7.100	1st Qu.:0.3900	1st Qu.:0.0900	1st Qu.: 1.900	1st Qu.:0.07000	1st Qu.: 7.00	1st Qu.: 22.00
Median : 7.900	Median :0.5200	Median :0.2600	Median : 2.200	Median :0.07900	Median :14.00	Median : 38.00
Mean : 8.323	Mean :0.5274	Mean :0.2716	Mean : 2.538	Mean :0.08744	Mean :15.85	Mean : 46.37
3rd Qu.: 9.200	3rd Qu.:0.6400	3rd Qu.:0.4250	3rd Qu.: 2.600	3rd Qu.:0.09000	3rd Qu.:21.00	3rd Qu.: 62.00
Max. :15.900	Max. :1.5800	Max. :1.0000	Max. :15.500	Max. :0.61100	Max. :72.00	Max. :289.00
density	рН	sulphates	alcohol	quality		
Min. :0.9901	Min. :2.740	Min. :0.3300	Min. : 8.40	Min. :3.000		
1st Qu.:0.9956	1st Qu.:3.210	1st Qu.:0.5500	1st Qu.: 9.50	1st Qu.:5.000		
Median :0.9968	Median :3.310	Median :0.6200	Median :10.20	Median :6.000		
Mean :0.9967	Mean :3.311	Mean :0.6582	Mean :10.43	Mean :5.637		
3rd Qu.:0.9978	3rd Qu.:3.400	3rd Qu.:0.7300	3rd Qu.:11.10	3rd Qu.:6.000		
Max •1 0037	Max •/ 010	Max .2.0000	Max .14 00	Max . 9 000		

</>>

Introduction to Machine Learning

Live Coding Example 1

A nice way to visualise correlation
library(corrplot)
df %>% cor() %>%
 corrplot.mixed(upper = "circle",
 tl.cex = 1,
 tl.pos = 'lt',
 number.cex = 0.75)

Live Coding Example 1 </>

5. Split the data into: a) Train set, b) Test set

set.seed(12345) # Fix randomisation by setting the seed (reproducibility)

All functions below come from the {rsample} package
data_split <- initial_split(df, prop = 0.8) # Use 80% of the data for training</pre>

train_data <- training(data_split)</pre>

test_data <- testing(data_split)</pre>

● df	1591 obs. of 12 variables	
💿 test_data	318 obs. of 12 variables	
💿 train_data	1273 obs. of 12 variables	

You can also specify stratified sampling (for class imbalance)

Design the formula for the model

A **formula** is an important element of machine learning because it is "a symbolic description of the model to be fitted" (taken from ?lm() help). It allows us to specify what the **target** variable is and what **features** we will use which we separate by a tilde symbol (~).

target ~ features

For more details check out **?formula**

Design the formula for the model

Target	Features
This is the "thing" you are trying to predict. Depending on the problem this is going to be a number or a category (class).	These are your variables that you have available to fit a model in order to predict the target variable. These can also be numbers or categories.
In maths or statistics this is also known as "v" or "response variable"	In maths or statistics these are also known as "x" or "covariates" or

"explanatory variables"

Feature engineering is a method of adding or creating more features to your formula in the hope of better predictions and model performance.

Live Coding Example 2 </>

For the below tasks, please store each formula in a different R object.

- 1. Using the loaded data what is/are:
 - a) The target variable (is it numeric or a class?)
 - b) The features of the model
- 2. Design a simple formula to predict the target variable.
- 3. Get creative with the features and design other formulas!

Live Coding Example 2 </>

2. Design a simple formula to predict the target variable.

Or the same as above but in shorter format
fmla1 <- formula(quality ~ .) # The "." says use all available features</pre>

3. Get creative and engineer some features to design other formulas!

Engineer some new features
fmla3 <- formula(quality ~ log(volatile_acidity) + log(alcohol))</pre>

Choose an algorithm and fit a model

A challenging task when building machine learning models is choosing which **algorithm** to use. There is a huge variety of options to select from!

Unfortunately there is no right or wrong answer for this choice, however it is often common for this decision to be influenced by the model's **explainability**, **interpretability** and overall model **performance**.

- Explainability literally explain exactly what is happening with the model and the predictions it generates
- Interpretability able to find out the mechanics of the model and the predictions it generates but without necessarily knowing why

Fit a linear regression model

A typical starting place for a regression type problem is to fit a **linear regression model**. We demonstrate here how this can easily be done within **{tidymodels}** by using the functionality of the **{parsnip}** package. In the following example we explore how we can use other algorithms.

Fit a linear regression model to the data

lm_fit <- # Create the object that will store the model fit linear_reg() %>% # Model type: Linear Regression set_mode("regression") %>% # Model mode: regression set_engine("lm") %>% # Computational engine: lm fit(fmla1, data = train_data) # Supply formula & train data and fit model

Some algorithms can be used for both regression or classification problems... that is why you should specify the type of problem with the function **set_mode()** see more details here:

https://www.tidymodels.org/find/parsnip/

Fit a linear regression model

print(lm_fit\$fit)

Call: stats::lm(formula = formula, data = data)											
Coefficients: (Intercept) 18.274260 free_sulfur_dioxide 0.006088	fixed_acidity 0.010860 total_sulfur_dioxide -0.003397	volatile_acidity -1.027444 density -14.013720	citric_acid -0.078096 рн -0.433262	residual_sugar 0.010779 sulphates 0.971165	chlorides -1.791911 alcohol 0.267353						

Live Coding Example 3 </>

For this example, select one of the formulas you designed. You can always switch to another formula very easily.

- 1. Fit a model using the following algorithms:
 - a) Decision Tree
 - b) Random Forest
 - c) Xgboost
- and store the model fit for each one in different R objects.

Live Coding Example 3 </>

Example 3

```
# 1 a) Decision Tree
# You need to install {rpart}
```

```
dt_fit <-
   decision_tree() %>%
   set_mode("regression") %>%
   set_engine("rpart") %>%
   fit(fmla1, data = train_data)
```

```
print(dt_fit$fit)
```

```
# Nice way to visualise a decision tree ...
# Need to install {visNetwork} and {sparkline}
library(visNetwork)
library(sparkline)
visTree(dt_fit$fit)
```


Live Coding Example 3 </>

n= 1273 node), split, n, deviance, yval * denotes terminal node 1) root 1273 816.65670 5.641791 2) alcohol< 11.55 1072 573.99160 5.502799 4) sulphates< 0.645 636 270.01730 5.294025 8) volatile_acidity>=0.7875 66 40.43939 4.803030 * 9) volatile_acidity< 0.7875 570 211.82460 5.350877 18) alcohol< 10.05 359 100.48470 5.214485 * 19) alcohol>=10.05 211 93.29858 5.582938 * 5) sulphates>=0.645 436 235.81650 5.807339 10) alcohol< 9.85 151 51.27152 5.443709 * 11) alcohol>=9.85 285 154.00000 6.000000 22) volatile_acidity>=0.405 160 74.99375 5.806250 * 23) volatile_acidity< 0.405 125 65.31200 6.248000 46) total_sulfur_dioxide>=49.5 34 14.94118 5.823529 * 47) total_sulfur_dioxide< 49.5 91 41.95604 6.406593 * 3) alcohol>=11.55 201 111.50250 6.383085 6) sulphates< 0.685 108 53.87963 6.101852 12) volatile_acidity>=0.485 46 22.36957 5.760870 * 13) volatile_acidity< 0.485 62 22.19355 6.354839 * 7) sulphates>=0.685 93 39.16129 6.709677 *

Live Coding Example 3 </>

```
# 1 b) Random Forest
# You need to install {randomForest}
```

```
rf_fit <-
    rand_forest() %>%
    set_mode("regression") %>%
    set_engine("randomForest") %>%
    fit(fmla1, data = train_data)
```

```
print(rf_fit$fit)
```

```
# 1 c) Xgboost
# You need to install {xgboost}
```

```
xgboost_fit <-
boost_tree() %>%
set_mode("regression") %>%
set_engine("xgboost") %>%
fit(fmla1, data = train_data)
```

```
print(xgboost_fit$fit)
```


Live Coding Example 3 </>

Random Forest

Call: randomForest(x = as.data.frame(x), y = y) Type of random forest: regression Number of trees: 500 No. of variables tried at each split: 3

Mean of squared residuals: 0.3369284 % Var explained: 47.48

xgboost

xgb.Booster
raw: 38.8 Kb
call:
 xgboost::xgb.train(params = list(eta = 0.3, max_depth = 6, gamma = 0,
 colsample_bytree = 1, min_child_weight = 1, subsample = 1),
 data = x, nrounds = 15, verbose = 0, objective = "reg:linear",
 nthread = 1)
params (as set within xgb.train):
 eta = "0.3", max_depth = "6", gamma = "0", colsample_bytree = "1", min_child_weight = "1", subsample = "1", objective = "reg:linear",
 nthread = "0.3", max_depth = "6", gamma = "0", colsample_bytree = "1", min_child_weight = "1", subsample = "1", objective = "reg:linear", nthread = "1", silent = "1"
 rgb.attributes:
 niter
 # of features: 11
 niter: 15
 nfeatures: 11

Predict and evaluate a model fit

<u>Questions:</u>

- How well can this model predict our target variable?
- How can we measure the performance of the model fit so that we can compare it with other models?

This is where the **test set** comes into action! It is important to note that the fitted (or trained) model has <u>never ever ever ever</u> <u>ever... ever</u> seen the test set.

We use the feature values of the test set to **predict** the target variable.

Predict and evaluate a model fit

The predict() function requires us to supply a model fit and the test set in order to generate predictions for the target variable. These get automatically stored in the column .pred

lm_pred <- test_data %>%
 bind_cols(predict(object = lm_fit, new_data = test_data))
View(lm_pred)

^	fixed_acidity 🗘	volatile_acidity +	citric_acid 🗘	residual_sugar 🗘	chlorides 🗘	free_sulfur_dioxide +	total_sulfur_dioxide +	density 🗘	рН 🗘	sulphates 🗘	alcohol 🗘	quality 🗘	.pred 🗘
	7.4	0.700	0.00	1.90	0.076	11.0	34	0.99780	3.51	0.56	9.4	5	5.024527
2	8.5	0.280	0.56	1.80	0.092	35.0	103	0.99690	3.30	0.75	10.5	1	5.888475
3	8.1	0.560	0.28	1.70	0.368	16.0	56	0.99680	3.11	1.28	9.3	5	5.444247

Why is this happening?!

Predict and evaluate a model fit

For this specific dataset we know that the target variable is in fact an **integer** and when we inspect our predictions we can see that these are **numeric** (decimal). We can solve this issue by simply rounding the predictions to the nearest integer.

```
lm_pred <- test_data %>%
bind_cols(predict(object = lm_fit, new_data = test_data)) %>%
mutate(pred = round(.pred, 0))
```

Spoiler alert! This "issue" should make you think about the problem definition...

Predict and evaluate a model fit

Since this is **supervised learning** (i.e. we have the actual observations of the target variable) we calculate a metric such as the **Mean Squared Error** (MSE) – *the lower the better* – in order to measure how good or bad these predictions are in comparison to other model fits.

```
View(lm_mse)
```


A **residual** (also referred to as **error**) is the difference between the observed outcome (truth) and the predicted outcome (estimate) of the target variable

Predict and evaluate a model fit

We have seen how to calculate the **Mean Squared Error** metric in an "old-school" fashion. This helps to understand the maths behind the metric.

It is useful to know that we have other options! For example, we can use the metrics() function from the **{yardstick}** package to calculate directly some other performance metrics!

metrics(lm_pred, truth = quality, estimate = pred)

#	A tibble	e: 3 x 3	
	.metric	.estimator	.estimate
	<chr></chr>	<chr></chr>	<db1></db1>
1	rmse	standard	0.696
2	rsq	standard	0.324
3	mae	standard	0.428

Live Coding Example 4 </>

- 1. Evaluate the MSE for each of the fitted models.
- 2. Which model fit achieved the lowest MSE?
- 3. Could this have been a classification type problem? Let's discuss!

Live Coding Example 4 </>

```
# 1 a) MSE for: Decision Tree
dt_pred <- test_data %>%
  bind_cols(predict(object = dt_fit, new_data = test_data)) %>%
  rename(pred = .pred) %>%
  mutate(pred = round(pred, 0))
dt_mse <- dt_pred %>%
  summarise(type = "dt",
            MSE = round(mean((pred - quality) \land 2), 4))
# 1 b) MSE for: Random Forest
rf_pred <- test_data %>%
  bind_cols(predict(object = rf_fit, new_data = test_data)) %>%
  rename(pred = .pred) %>%
  mutate(pred = round(pred, 0))
rf_mse <- rf_pred %>%
  summarise(type = "rf",
            MSE = round(mean((pred - quality)^2), 4))
```


Live Coding Example 4 </>

1 c) MSE for: xgboost

```
xgboost_pred <- test_data %>%
  bind_cols(predict(object = xgboost_fit, new_data = test_data)) %>%
  rename(pred = .pred) %>%
  mutate(pred = round(pred, 0))
```

```
xqboost_mse <- xqboost_pred %>%
  summarise(type = "xgboost",
           MSE = round(mean((pred - quality)^2), 4))
```

```
# Join all results together
```

res <- bind_rows(lm_mse, dt_mse, rf_mse, xgboost_mse)</pre>

View(res)

Live Coding Example 4 </>

View predictions for the test set

^	fixed_acidity ‡	volatile_acidity ‡	citric_acid 🗘 🗘	residual_sugar 🗘	chlorides 🗧 🗘	free_sulfur_dioxide +	total_sulfur_dioxide +	density 🗘	pH [‡]	sulphates 🗧 🗘	alcohol 🗘	quality 🗘	pred	\$
1	7.4	0.700	0.00	1.90	0.076	11	34	0.99780	3.51	0.56	9.4	5	5	
2	8.5	0.280	0.56	1.80	0.092	35	103	0.99690	3.30	0.75	10.5	7	6	
3	8.1	0.560	0.28	1.70	0.368	16	56	0.99680	3.11	1.28	9.3	5	5	
4	7.4	0.590	0.08	4.40	0.086	6	29	0.99740	3.38	0.50	9.0	4	5	
5	7.9	0.430	0.21	1.60	0.106	10	37	0.99660	3.17	0.91	9.5	5	5	
6	6.3	0.390	0.16	1.40	0.080	11	23	0.99550	3.34	0.56	9.3	5	5	
7	8.3	0.655	0.12	2.30	0.083	15	113	0.99660	3.17	0.66	9.8	5	5	
8	8.8	0.610	0.30	2.80	0.088	17	46	0.99760	3.26	0.51	9.3	4	5	
9	7.5	0.490	0.20	2.60	0.332	8	14	0.99680	3.21	0.90	10.5	6	6	
10	8.1	0.660	0.22	2.20	0.069	9	23	0.99680	3.30	1.20	10.3	5	6	
11	5.6	0.310	0.37	1.40	0.074	12	96	0.99540	3.32	0.58	9.2	5	5	
12	6.6	0.500	0.04	2.10	0.068	6	14	0.99550	3.39	0.64	9.4	6	6	
13	10.2	0.420	0.57	3.40	0.070	4	10	0.99710	3.04	0.63	9.6	5	6	
14	7.7	0.690	0.49	1.80	0.115	20	112	0.99680	3.21	0.71	9.3	5	5	
15	7.5	0.520	0.16	1.90	0.085	12	35	0.99680	3.38	0.62	9.5	7	5	

Other topics in Machine Learning

- Further steps to do data pre-processing (such as scale, centre, PCA). Check out the {recipes} package which is part of {tidymodels} and is designed to help you for these tasks before you fit a model!
- Fit a model with resampling such as cross-validation. Check out the {rsample} package which is part of {tidymodels} that helps you do this.
- Model hyper-parameter tuning. A model can depend on parameters which might require you to tune them in order to find "the best setup" and achieve better performance. Check out the {tune} package which is part of {tidymodels} and is designed for this specific task.
- One-hot-encoding: What if you have a categorical variable in your set of features? This is the process by which we convert a categorical variable into columns of 1's and 0's. This might be needed for some ML algorithms that require that **all** your features are numeric.

Thank you to our sponsors and partners!

