
Introduction to
Machine Learning

1
Nicolas Attalides

Workshop – 23rd November 2021

https://www.linkedin.com/in/nicolas-attalides

Who am I?

2

 Name: Nicolas Attalides

 Coding in since: 2005 (yes that’s before RStudio!)

 Profession: Principal Data Scientist and trainer (6+ yrs.)

 Education: PhD in Statistical Science from UCL (2015)

 R Status: A never-ending evolving R dinosaur

 Hobbies: Tennis and coding (not at the same time)

Setup script

https://github.com/nattalides/Barc
elonaR_workshop_Introduction_to
_Machine_Learning

Resources

 R (version 3.6.3)

 RStudio (version 1.4.1106)

Packages

 tidyverse (version 1.3.1)

 tidymodels (version 0.1.3)

 rpart (version 4.1-15)

 randomForest (version 4.6-14)

 xgboost (version 1.4.1.1)

 + some optional packages for

visualisations

3

Workshop Setup:

https://github.com/nattalides/BarcelonaR_workshop_Introduction_to_Machine_Learning

What is Machine Learning?

4

Some breakthroughs in this area are machine vision and

reinforcement learning (also known as deep learning) with some

exciting examples such as DeepMind’s AlphaGo.

*Image reference: https://www.lexalytics.com/

Statistics Computer
Science

Machine Learning (ML)

https://www.lexalytics.com/

Machine Learning & R

5

There are many packages dedicated to machine learning that you

can install from CRAN. Some of the popular ones are {rpart},

{randomForest} and {xgboost}.

In this workshop we are going to use {tidymodels} which is a

framework package aiming to streamline ML tasks and unify the

interface of the various algorithms. It also follows the tidyverse principles.

Check out: https://cran.r-project.org/web/views/MachineLearning.html

https://cran.r-project.org/web/views/MachineLearning.html

Topics

6

 Workshop aim:

Learn how to design, fit and evaluate a machine learning model to

solve a specific problem.

 Topics:

• Define the problem and evaluation metrics

• Load, prepare and split the data to train and test sets

• Design the formula for the model

• Choose an algorithm and fit a model

• Predict and evaluate a fitted model

Machine Learning is commonly used to solve two types of problems:

 Regression – This is when… what you are trying to predict (the target variable)

is numeric, for example the number of units sold of a product.

 Classification – This is when… what you are trying to predict (the target variable)

is categorical (or a class), for example “hot dog or not hot dog”.

7

Define the problem

In Machine Learning there are different types of learning that can be done … this

depends on the available data and the outcome:

8

Types of learning

Type Description Example

Supervised Target variable is known Predict which customer is going to
cancel their subscription service

Unsupervised Target variable is unknown Group “similar” customers into
categories

Semi-
supervised

Target variable is partially
known Detect credit card fraud

Reinforcement Maximise a reward by taking
actions Win a game of chess

There are many ways that you can measure the performance of your model.

Below is a list of some of the typical metrics used for regression and

classification problems:

9

Metrics for model performance

You can always create your own custom metric!

 Regression

▪ MSE – Mean Squared Error

▪ RMSE – Root Mean Squared Error

▪ MAE – Mean Absolute Error

▪ R2 – A measure that is related to MSE

and is scaled between 0 and 1

 Classification

▪ Accuracy

▪ Precision

▪ Recall

▪ AUC – Area Under the Curve

One of the most essential tasks (and usually the most time

consuming – but sometimes can feel like a relaxing activity but

can be equally frustrating) is … data cleaning!

It is important that you understand the data! What are the

types? Any missing values? Is there correlation in your features?

A good Exploratory Data Analysis (EDA) is the best starting

point, otherwise…

10

Load and prepare data

Data – Used for live coding examples

11

The data that we will use during this workshop are:

Red wine quality of the Portuguese "Vinho Verde" wine which includes:

Physicochemical test results (such as PH) and quality assessment

graded by experts - 0 (very bad) and 10 (very excellent)

DATASET CITATION: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Data Dictionary

12

 fixed acidity (tartaric acid - g / dm3)

 volatile acidity (acetic acid - g / dm3)

 citric acid (g / dm3)

 residual sugar (g / dm3)

 chlorides (sodium chloride - g / dm3)

 free sulfur dioxide (mg / dm3)

 total sulfur dioxide (mg / dm3)

 density (g / cm3)

 pH

 sulphates (potassium sulphate - g / dm3)

 alcohol (% by volume)

 quality (score between 0 and 10)

13

Live Coding Example 1
Download the wine quality dataset from:

https://github.com/nattalides/BarcelonaR_worksho

p_Introduction_to_Machine_Learning/blob/master/

data/data.rds

1. Load and view the data.

2. Do a quick exploratory data analysis (EDA).

3. Fix column names.

4. Remove any missing values.

5. Split the data into:

a) Train set

b) Test set

For more practice datasets go to:
https://archive.ics.uci.edu/ml/index.php

https://github.com/nattalides/BarcelonaR_workshop_Introduction_to_Machine_Learning/blob/master/data/data.rds
https://archive.ics.uci.edu/ml/index.php

Live Coding Example 1

14

column names

missing values

Live Coding Example 1

15

A summary of the data frame

missing values

Live Coding Example 1

16

A correlation matrix of the data

missing values

Live Coding Example 1

17

library(tidyverse)
library(tidymodels)

Example 1

Load and view the data.
df <- readRDS("data/data.rds")

View(df)

Do some exploratory data analysis (EDA).
1. A summary of the data frame
df %>% summary

2. A correlation plot of the data
df %>% cor()

Live Coding Example 1

18

3. Fix column names
colnames(df) <- df %>%
colnames() %>% str_replace_all(pattern = " ", replacement = "_")

4. Remove any missing values
df <- df %>% drop_na()

df %>% summary()

Live Coding Example 1

19

A nice way to visualise correlation
library(corrplot)
df %>% cor() %>%
corrplot.mixed(upper = "circle",

tl.cex = 1,
tl.pos = 'lt',
number.cex = 0.75)

Live Coding Example 1

20

5. Split the data into: a) Train set, b) Test set

set.seed(12345) # Fix randomisation by setting the seed (reproducibility)

All functions below come from the {rsample} package
data_split <- initial_split(df, prop = 0.8) # Use 80% of the data for training

train_data <- training(data_split)

test_data <- testing(data_split)

You can also specify stratified sampling (for class imbalance)

A formula is an important element of machine learning

because it is “a symbolic description of the model to be fitted”

(taken from ?lm() help). It allows us to specify what the target

variable is and what features we will use which we separate by

a tilde symbol (~).

For more details check out ?formula

21

Design the formula for the model

target ~ features

22

Design the formula for the model

Feature engineering is a method of adding or creating more

features to your formula in the hope of better predictions and

model performance.

Target Features

This is the “thing” you are trying to
predict. Depending on the problem

this is going to be a number or a
category (class).

In maths or statistics this is also
known as “y” or “response variable”

These are your variables that you have
available to fit a model in order to predict

the target variable. These can also be
numbers or categories.

In maths or statistics these are also
known as “x” or “covariates” or

“explanatory variables”

23

Live Coding Example 2

For the below tasks, please store each

formula in a different R object.

1. Using the loaded data what is/are:

a) The target variable (is it numeric or a

class?)

b) The features of the model

2. Design a simple formula to predict the

target variable.

3. Get creative with the features and design

other formulas!

Live Coding Example 2

24

2. Design a simple formula to predict the target variable.

Formula that uses all available features
fmla1 <- formula(quality ~ fixed_acidity + volatile_acidity + citric_acid +

residual_sugar + chlorides + free_sulfur_dioxide +
total_sulfur_dioxide + density + pH + sulphates + alcohol)

Or the same as above but in shorter format
fmla1 <- formula(quality ~ .) # The "." says use all available features

3. Get creative and engineer some features to design other formulas!

Remove some of the correlated features
fmla2 <- formula(quality ~ fixed_acidity + volatile_acidity + residual_sugar +

chlorides + free_sulfur_dioxide + pH + sulphates + alcohol)

Engineer some new features
fmla3 <- formula(quality ~ log(volatile_acidity) + log(alcohol))

A challenging task when building machine learning models is choosing which

algorithm to use. There is a huge variety of options to select from!

Unfortunately there is no right or wrong answer for this choice, however it is

often common for this decision to be influenced by the model’s explainability,

interpretability and overall model performance.

 Explainability – literally explain exactly what is happening with the model

and the predictions it generates

 Interpretability – able to find out the mechanics of the model and the

predictions it generates but without necessarily knowing why

25

Choose an algorithm and fit a model

Fit a linear regression model to the data

lm_fit <- # Create the object that will store the model fit
linear_reg() %>% # Model type: Linear Regression
set_mode("regression") %>% # Model mode: regression
set_engine("lm") %>% # Computational engine: lm
fit(fmla1, data = train_data) # Supply formula & train data and fit model

A typical starting place for a regression type problem is to fit a linear

regression model. We demonstrate here how this can easily be done within

{tidymodels} by using the functionality of the {parsnip} package. In the

following example we explore how we can use other algorithms.

26

Fit a linear regression model

Some algorithms can be used for both regression or classification problems… that is why you

should specify the type of problem with the function set_mode() see more details here:

https://www.tidymodels.org/find/parsnip/

https://www.tidymodels.org/find/parsnip/

Fit a linear regression model

27

print(lm_fit$fit)

28

Live Coding Example 3

For this example, select one of the formulas

you designed. You can always switch to

another formula very easily.

1. Fit a model using the following

algorithms:

a) Decision Tree

b) Random Forest

c) Xgboost

and store the model fit for each one in

different R objects.

Don’t forget to install the necessary packages
for the algorithms!

Live Coding Example 3

29

Example 3

1 a) Decision Tree
You need to install {rpart}

dt_fit <-
decision_tree() %>%
set_mode("regression") %>%
set_engine("rpart") %>%
fit(fmla1, data = train_data)

print(dt_fit$fit)

Nice way to visualise a decision tree ...
Need to install {visNetwork} and {sparkline}
library(visNetwork)
library(sparkline)
visTree(dt_fit$fit)

Live Coding Example 3

30

Live Coding Example 3

31

1 b) Random Forest
You need to install {randomForest}

rf_fit <-
rand_forest() %>%
set_mode("regression") %>%
set_engine("randomForest") %>%
fit(fmla1, data = train_data)

print(rf_fit$fit)

1 c) Xgboost
You need to install {xgboost}

xgboost_fit <-
boost_tree() %>%
set_mode("regression") %>%
set_engine("xgboost") %>%
fit(fmla1, data = train_data)

print(xgboost_fit$fit)

Live Coding Example 3

32

Random Forest

xgboost

Questions:

 How well can this model predict our target variable?

 How can we measure the performance of the model fit so

that we can compare it with other models?

This is where the test set comes into action! It is important to

note that the fitted (or trained) model has never ever ever ever

ever… ever seen the test set.

We use the feature values of the test set to predict the target

variable.

33

Predict and evaluate a model fit

lm_pred <- test_data %>%
bind_cols(predict(object = lm_fit, new_data = test_data))

View(lm_pred)

34

Predict and evaluate a model fit
The predict() function requires us to supply a model fit and the test set in

order to generate predictions for the target variable. These get automatically

stored in the column .pred

Why is this happening?!

lm_pred <- test_data %>%
bind_cols(predict(object = lm_fit, new_data = test_data)) %>%
mutate(pred = round(.pred, 0))

35

Predict and evaluate a model fit
For this specific dataset we know that the target variable is in fact an

integer and when we inspect our predictions we can see that these

are numeric (decimal). We can solve this issue by simply rounding the

predictions to the nearest integer.

Spoiler alert! This “issue” should make you think about the

problem definition…

lm_mse <- lm_pred %>%
summarise(type = "lm",

MSE = round(mean((pred - quality)^2), 4))

View(lm_mse)

36

Predict and evaluate a model fit
Since this is supervised learning (i.e. we have the actual observations of the

target variable) we calculate a metric such as the Mean Squared Error (MSE) –

the lower the better – in order to measure how good or bad these predictions

are in comparison to other model fits.

A residual (also referred to as error) is the difference between the observed
outcome (truth) and the predicted outcome (estimate) of the target variable

metrics(lm_pred, truth = quality, estimate = pred)

37

Predict and evaluate a model fit
We have seen how to calculate the Mean Squared Error metric

in an “old-school” fashion. This helps to understand the maths

behind the metric.

It is useful to know that we have other options! For example, we

can use the metrics() function from the {yardstick} package

to calculate directly some other performance metrics!

38

Live Coding Example 4

1. Evaluate the MSE for each of the

fitted models.

2. Which model fit achieved the lowest

MSE?

3. Could this have been a classification

type problem? Let’s discuss!

Live Coding Example 4

39

1 a) MSE for: Decision Tree
dt_pred <- test_data %>%
bind_cols(predict(object = dt_fit, new_data = test_data)) %>%
rename(pred = .pred) %>%
mutate(pred = round(pred, 0))

dt_mse <- dt_pred %>%
summarise(type = "dt",

MSE = round(mean((pred - quality)^2), 4))

1 b) MSE for: Random Forest
rf_pred <- test_data %>%
bind_cols(predict(object = rf_fit, new_data = test_data)) %>%
rename(pred = .pred) %>%
mutate(pred = round(pred, 0))

rf_mse <- rf_pred %>%
summarise(type = "rf",

MSE = round(mean((pred - quality)^2), 4))

Live Coding Example 4

40

1 c) MSE for: xgboost

xgboost_pred <- test_data %>%
bind_cols(predict(object = xgboost_fit, new_data = test_data)) %>%
rename(pred = .pred) %>%
mutate(pred = round(pred, 0))

xgboost_mse <- xgboost_pred %>%
summarise(type = "xgboost",

MSE = round(mean((pred - quality)^2), 4))

Join all results together

res <- bind_rows(lm_mse, dt_mse, rf_mse, xgboost_mse)

View(res)

Live Coding Example 4

41

View predictions for the test set

42

Other topics in Machine Learning

 Further steps to do data pre-processing (such as scale, centre, PCA). Check out the

{recipes} package which is part of {tidymodels} and is designed to help you for these

tasks before you fit a model!

 Fit a model with resampling such as cross-validation. Check out the {rsample} package

which is part of {tidymodels} that helps you do this.

 Model hyper-parameter tuning. A model can depend on parameters which might

require you to tune them in order to find “the best setup” and achieve better

performance. Check out the {tune} package which is part of {tidymodels} and is

designed for this specific task.

 One-hot-encoding: What if you have a categorical variable in your set of features? This is

the process by which we convert a categorical variable into columns of 1’s and 0’s. This

might be needed for some ML algorithms that require that all your features are numeric.

https://www.tidymodels.org/

https://www.tidymodels.org/

Thank you to our sponsors and partners!

43

