
Introduction to Data
Manipulation

1
Nicolas Attalides

BarcelonaR - Workshop

https://www.linkedin.com/in/nicolas-attalides

Wi-Fi

 Network Name: N/A

 Password: N/A

Resources

 R (version 4.0.1)

 RStudio (version 1.3.959)

Packages

 tidyverse

2

Workshop Setup:

What is tidyverse?

3

Tidyverse is a collection of packages that are designed for data

science tasks, more specifically for data manipulation,

transformation, exploration and visualisation.

These packages share a common design philosophy and contain

functions that are consistent and uniform in coding style.

You can read more at https://www.tidyverse.org/

https://www.tidyverse.org/

Topics

4

 Workshop aim:

Learn how to do data manipulations using tidyverse packages.

 Topics:

• Learn the “verbs” with

• Improve your workflow with

• Simple string manipulation using

library(tidyverse)

View(starwars)

One of the most commonly used R packages when dealing with data

manipulations is {dplyr}. It is very powerful in handling tabular data such as data

frames and is easy to use through “verb” functions. You can use {dplyr} to:

 Select columns from your data

 Filter your data to keep the rows that meet some conditions

 Arrange your data in some order

 Mutate your data and create new columns

 Group and summarise your data

5

Learn the “verbs” with

6

Live Coding Example 1

Use the starwars dataset from the {dplyr}

package to:

1. Select the columns: “name”, “height”, “mass”,

“species”.

2. Filter the rows to keep only those characters

that are greater than or equal to 175cm.

3. Filter the rows to keep only the “Human”

characters.

4. Arrange the rows according to descending

“mass” values.

5. Who is the character on the first row?

Live Coding Example 1

7

selected columns

filtered rows

arranged rows

Who is the character

on the first row?

Live Coding Example 1

8

Select columns

df <- select(starwars, name, height, mass, species)

Filter rows by height condition

df <- filter(df, height >= 175)

Filter rows by species condition

df <- filter(df, species == "Human")

Arrange rows by descending mass

df <- arrange(df, desc(mass))

Create a column for height in metres

df <- mutate(starwars, height_m = height/100)

Very often you will want to create new columns from your existing data. The

function mutate() in the {dplyr} package can be used to do exactly this task.

You can actually create multiple columns in a single function call.

9

Mutate your data

Find the min/mean/max mass value for each species category

df <- summarise(group_by(starwars, species),

min_mass = min(mass, na.rm = TRUE),

mean_mass = mean(mass, na.rm = TRUE),

max_mass = max(mass, na.rm = TRUE))

Another very common task is to group your data by a column (or more than

one column) and then create summarised values for the grouped data. The

functions group_by() and summarise() in the {dplyr} package make it very

easy to do these transformations.

10

Group and summarise your data

11

Live Coding Example 2

Use the starwars dataset to:

1. Remove the columns “films”, “vehicles”,

“starships” from the data.

2. Remove rows that have missing mass values.

3. Calculate the Body Mass Index (BMI) for each

character*.

4. Arrange the rows by descending BMI … who

do you think is at the top?

5. Find the median BMI value for each gender

category.

*BMI = weight (kg) / height2 (m)
Use minus sign “-” to remove columns

Live Coding Example 2

12

Investigate data quality

Who is the character

with the highest BMI?

Live Coding Example 2

13

Select columns
df <- select(starwars, -films, -vehicles, -starships)

Filter rows that have missing mass
df <- filter(df, !is.na(mass))

Create columns: height in metres and the Body Mass Index (BMI)
df <- mutate(df, height_m = height/100, BMI = mass / (height_m)^2)

Arrange rows according to descending “BMI” values
df <- arrange(df, desc(BMI))

Calculate the median BMI value for each gender
df <- summarise(group_by(df, gender), median_BMI = median(BMI))

Summary of {dplyr} “verb” functions

14

Function Description

select Select columns by name

filter Filter rows that meet a condition

arrange Arrange rows to some order

mutate Mutate data to create new columns

group_by Group data by columns

summarise Summarise data to values

A package that has changed the way we write R code is called {magrittr}. It has

significantly improved the readability and workflow of code by introducing the

“pipe” operator. It acts as a “then” operation where we can pass data from one

function to another function very easily.

Fun fact: The package name is inspired by the famous artist René Magritte.

One of his work, a pipe, has the text “this is not a pipe” as a caption …

this is where the {magrittr} package gets its image.

15

Improve your workflow with

16

Live Coding Example 3

Repeat Example 1 using the pipe operator

from the {magrittr} package.

1. Select the columns: “name”, “height”,

“mass”, “species” THEN filter the rows to

keep only those characters that are

greater than or equal to 175cm THEN

filter the rows to keep only the human

characters THEN arrange the rows

according to descending “mass” values.

17

library(magrittr)

Pipe each data manipulation operation to the next one

df <- starwars %>%

select(name, height, mass, species) %>%

filter(height >= 175) %>%

filter(species == "Human") %>%

arrange(desc(mass))

Live Coding Example 3

Try CTRL+SHIFT+M (Windows) CMD+SHIFT+M (Mac)
and see what happens

18

Live Coding Example 4

Repeat Example 2 using the pipe operator

from the {magrittr} package.

1. Remove the columns “films”, “vehicles”,

“starships” from the data THEN remove

rows that have missing mass values

THEN calculate the Body Mass Index

(BMI) for each character THEN arrange

the rows by descending BMI THEN find

the median BMI value for each gender

category.

19

Pipe each data manipulation operation to the next one

df <- starwars %>%

select(-films, -vehicles, -starships) %>%

filter(!is.na(mass)) %>%

mutate(height_m = height/100,

BMI = mass / (height_m)^2) %>%

arrange(desc(BMI)) %>%

group_by(gender) %>%

summarise(median_BMI = median(BMI))

Live Coding Example 4

The package in the tidyverse collection that helps us do data manipulations

involving strings is called {stringr}. String manipulation is another common

task, especially in data cleaning and pre-processing. Here are some examples:

20

Simple string manipulation using

Make all character names as lower case

string <- str_to_lower(starwars$name)

Combine the name, hair colour & eye colour of characters in a sentence

string <- str_c(starwars$name, " has ",

starwars$hair_color, " hair and ",

starwars$eye_color, " eyes.")

Create an indicator where the specific pattern matches

ind <- str_detect(string = starwars$name, pattern = "Skywalker")

21

Live Coding Example 5

Use the starwars dataset to:

1. Transform the character names to upper

case.

2. Combine the “name” and the

“homeworld” to create a sentence, for

example: “Luke Skywalker is from

Tatooine”.

3. Create an indicator for the rows where

characters have green skin.

22

Live Coding Example 5

Make all character names as upper case

string <- str_to_upper(starwars$name)

Combine the name, hair colour & eye colour of characters in a sentence

string <- str_c(starwars$name, " is from ",

starwars$homeworld, ".")

Create an indicator where the specific pattern matches

ind <- str_detect(string = starwars$skin_color, pattern = "green")

23

Other resources – {dplyr} cheat sheet

Get the cheat sheet at: https://rstudio.com/resources/cheatsheets/

https://rstudio.com/resources/cheatsheets/

24

Other resources – {stringr} cheat sheet

Get the cheat sheet at: https://rstudio.com/resources/cheatsheets/

https://rstudio.com/resources/cheatsheets/

Thank you to our sponsors and partners!

25

