Barcelona @ @ Introduction to Building packagesin R

lNntroduction to
Bullding packages in R

devtools

https://www.linkedin.com/in/nicolas-attalides

Barcelona @ @ Introduction to Building packagesin R

Whoam I?

» Name: Nicolas Attalides

» Coding in (R since: 2005 (yes that's before RStudio!)
» Profession: Senior Data Scientist and trainer (6+ yrs.)
» Education: PhD in Statistical Science from UCL (2015)
» R Status: A never-ending evolving R dinosaur

» Hobbies: Tennis and coding (not at the same time)

Barcelona@ @ Introduction to Building packagesin R

Workshop Setup:

Wi-Fi Packages
» Network Name: N/A » {tidyverse} (version 1.3.0)@
» Password: N/A » {devtools} (version 2.3.2)

» {usethis} (version 2.0.1)

Resources
» R (version 3.6.3) @
» RStudio (version 1.4.1106) £ Studio

Barcelona @ @ Introduction to Building packagesin R

What is an R package?

0009000
e ®‘®$

follow some standard rules and ‘o

formats.

An (R package is like a collection of

code, data and documentation that

This is the best way for an R user to
share their work and enable others to

use the functionality that is developed.

Barcelona@

@ Introduction to Building packagesin R

Comprehensive R Archive Network (CRAN)

The central repository of R packages is called the Comprehensive R

Archive Network (CRAN). This contains an archive of R distributions

and has more than 1

7,000 packages ready to be installed and used.

A3
aaSEA
AATtools
ABACUS
abbyyR
abc

abc.data
ADCDAD

Available CRAN Packages By Name

Accurate, Adaptable, and Accessible Error Metrics for Predictive Models
Amino Acid Substitution Effect Analyser

Reliability and Scoring Routines for the Approach-Avoidance Task

Apps Based Activities for Communicating and Understanding Statistics
Access to Abbyy Optical Character Recognition (OCR) API
Tools for Approximate Bayesian Computation (ABC)

Data Only: Tools for Approximate Bayesian Computation (ABC)

Avearsr Dacad Onl Dacian Analsrcic Dinalina

0 Find out more about CRAN here: https://cran.r-project.org/

https://cran.r-project.org/

Barcelona@ @ Introduction to Building packagesin R

Topics

» Workshop aim:

Learn how to build an R package in an easy step-by-step approach.

» Topics:
Learn how to create an R package within ®Studid

Understand the package structure and its various components

Learn how to write, document and test functions in @ for a package

Learn how to check, build and install an R package

Barcelona @ Introduction to Building packagesin R

Create an R package
C—

File | Edit Code View Plots Session Build Deb

New File » Open the File options and select
| MNew Project... —
113 M n
Open File.. Ctrl+0 New Project...
Open File in New Column...
Recent Files J
New Project Wizard
Open Project...
Open Project in New Session... Create Project
recentHroject r Then select
Import Dataset J R New Directory
- Start a project in a brand new working directory h It .
Save Ctrl+S New Directory
Save As...
Save All Ctrl+Alt+5 Existing Directory N

Associate a project with an existing working directory

p-
Print... Version Control N
Checkout a project from a version control repository

Close Ctrl+W
Close All Ctrl+5Shift+W
Close All Except Current Ctrl+Alt+5hift+ W Cancel

Publizh...

Close Project

Quit Session... Ctrl+Q

B&FCQ[OHB@ @ Introduction to Building packagesin R

Create an R package

MNew Project Wizard

Back Project Type

B New Project

&) R Package G == | Solect “R Package"

E Shiny Web Application

R Package using RcppArmadillo

>
>
>
R Package using Rcpp >
>
R Package using RcppEigen)

>

R Package using RcppParallel

| Cancel |

Barcelona@ @ Introduction to Building packagesin R

Create an R package

Mew Project Wizard

Back Create R Package
Type: Package name:; .
i Package] Type in package
Create package based on source files: name
- Add...
- Remove
Create project as subdirectory of: Select the location
C:/Users/Nicolas/Desktop Browse., | W—

of the package

|| Create a git repository | | Use renv with this project

Select “Create

|| Open in new session Create projectmf Project"

B&FCQ[OHB@ @ Introduction to Building packagesin R

Congratulations! You created an R package*!

¥ Name Size Modified

t.
(] & man
] &R
O = test.Rproj 376 B Mar 30, 2021, 10:28 AM
) J Rbuildignore 30B Mar 30, 2021, 10:28 AM
O iﬂ DESCRIPTION 377 B Mar 30, 2021, 10:28 AM
J J MNAMESPACE 32B Mar 30, 2021, 10:28 AM

g *An empty package with the basic structure...

B&FC@[OHB@ @ Introduction to Building packagesin R
Create an R package

An alternative way to create an R package with the same result is

to use the create_package() function from the {usethis} package.

Tibrary(devtools)

create_package("C:/Users/Nicolas/Desktop/myRpackage™)

Package path Package name

0 This opens a new RStudio session with the new project loaded

Barcelona @ Introduction to Building packagesin R

Congratulations! You created an R package*!

J Creating 'C:/Users/Nicolas/Desktop/test/’

J setting active project to 'C:/Users/Nicolas/Desktop/test’

J Creating 'R/’

J Writing 'DESCRIPTION'

Package: test

Title: what the Package Does (One Line, Title Case)

version: 0.0.0.9000

Authors@r (parsed):
* First Last <first.last@example.com> [aut, cre] (<https://orcid.org/YOUR-ORCID-ID>)

Description: what the package does (one paragraph).

License: ‘use_mit_license() , "use_gpl3_Tlicense() or friends to
pick a license

Encoding: UTF-8

LazyData: true

Roxygen: Tist(markdown = TRUE)

RoxygenNote: 7.1.1

J Writing 'NAMESPACE'

J Writing 'test.Rproj’

J Adding "Atest\\.Rproj$' to '.Rbuildignore’

J Adding '.Rproj.user' to '.gitignore’

J Adding "A\\.Rproj\\.user$"' to '.Rbuildignore’

J opening 'C:/Users/Nicolas/Desktop/test/' in new RStudio session

J Setting active project to '<no active project>'

0 *An empty package with the basic structure...

B&FCQ[OHB@ @ Introduction to Building packagesin R
Live Coding Example 1 @

-

1. Load the {devtools} package

2. Create an empty R package called
“myRpackage”

Note:

% The functionality of this package

will be kept simple

% The main goal is to help the
learning process and practice the

package development cycle!

B&FC@[OHB@ @ Introduction to Building packagesin R

File and Folder structure of an R package

: Name The man folder contains the documentation

¥ / for the functions
| |i| man

TR
Project file By tes.t.Rp;\ The R folder contains the code for the

' _| Rbuildignore functions
Specifies which /fv | DESCRIPTION l

files and folders 1] NAMESPACE We cover these files later

l

not to include

in the package

when installed

The man folder will be missing when you use the create_package () function

but it will be automatically created with the first documentation step

B&FC@[OHB@ @ Introduction to Building packagesin R

Document an R package

The function document () from {devtools} is used to build all the

documentation for a package.

document() # CTRL + SHIFT + D

For an empty package this function will simply create the “man”

folder if it does not exist.

> document()

Updating myRpackage documentation
Loading myRpackage

Barcelonag@

Check an R package

The function check () from {devtools} automatically builds and
checks a package. It runs through a number of checks and will
return a summary of the check results.

check() # CTRL + SHIFT + E

-- R ¢MD check results ----------mmmmmm e test 0.0.0.9000 ----
Duration: 8.9s

> checking DESCRIPTION meta-information ... WARNING
Non-standard Ticense specification:
‘use_mit_license() , wuse_gpl3_Tlicense() or friends to pick a
license

Standardizable: FALSE

0 errors + | 1 warning x | 0 notes

@ Introduction to Building packagesin R

Barcelona@

Live Coding Example 2 @

@ Introduction to Building packagesin R

. Load the {devtools} package

2. Document the package

{myRpackage}

3. Check the package
{myRpackage}

Barcelona @ Introduction to Building packagesin R

DESCRIPTION file

The DESCRIPTION file is used to

store important metadata about the

Package: test
Title: what the Package Does (One Line, Title Case)
package. For example: version: 0.0.0.9000
Authors@R:
. . person(given = "First",
» What is the package title family = "Last",
role = c(Maut", "cre"),
email = "first.last@example.com”,
H H comment = c(ORCID = "YOUR-ORCID-ID"))
> What 1S the paCkage version Description: What the package does (one paragraph).
License: ‘use_mit_Ticense() , use_gpl3_license() or friends to
ick a Ticense
» Who to contact Encoding: UTF8
LazyData: true
. . Roxygen: Tist(markdown = TRUE)
» Who can use it (the license) RoxygenNote: 7.1.1

» What other packages are needed

for it to work

Barcelona R @ Introduction to Building packagesin R

DESCRIPTION fields

Below is some important guidelines to follow for the DESCRIPTION file fields.

m

Title This is typically a one line description of the package. It should be plain text, not more
than 65 characters long, capitalised like a title, and NOT end in a period!

This is a more detailed text about your package. It can be multiple sentences but it is

Description limited to one paragraph, each line must be no more than 80 characters wide and
new lines must be indented with 4 spaces!

The packages that are listed in this field must be installed on your computer for your
Imports package to work because they are being used by your package. If any package is
missing, it will be automatically installed when your package is installed.

The packages that are listed in this field can be used by your package but they are not

Suggests required. If any package is missing, it will not be automatically installed when your
package is installed.

Barcelona @ Introduction to Building packagesin R

Package version

Package: devtools

The VerSion f|e|d Of the DESCR' PTlON Title: Tools to Make Developing R Packages Easier

| version: 2.3.2.980@ |

Authors@R:

file shows the package'’s version number. c(person(etven - “valey”,
amily = "Wickham™,
role = "aut"},
. . : person{given = "Jim",
» Typically a version number is made up - e,
role = c("aut”, "cre"),
Of th fee Nnum be Irs. email = "jim.hester@rstudio.com™),
person({given = "Winston",
<major>.<minor>.<patch> e
person{given = "RStudio”,
For example: 1.3.0 ole = "cph"),
person{given = "R Core tzam”,
. . role = "cth”,
» A package ‘that |S In-development comment = “Some namespace and vignette code extracted from base R"))
Description: Collection of package development tools.
usually has ends with “9000" e

URL: https://devtools.r-lib.org/, https://github.com/r-1ib/devtools

BugReports: https://github.com/r-lib/devtools/issues

Depends:
R (»= 3.8.2),
usethis (»= 2.8.1)

For example: 1.3.0.9000

Example of DESCRIPTION file of the
{devtools} package

B&FCQ[OHB@ @ Introduction to Building packagesin R
Live Coding Example 3 @

i 1. Edit the DESCRIPTION file with

the metadata about the

package (Title and Description)
and your details (Author)

2. Save the changes

3. Document the package

{myRpackage}

4. Check the package
{myRpackage}

Barcelona @ @ Introduction to Building packagesin R
NAMESPACE file

The NAMESPACE file can be quite

confusing and is considered an

advanced topic (hence the warning!).

In a simplified way, it is the file that \
. . A This document is read only.

controls the communication between 1 [Generated by roxygen2: do not edit by hand

2
packages and their functions. For 3

example, it manages the functions to
export (from your package) and
functions to import (from other

packages).

Barcelona @ @ Introduction to Building packagesin R
What is an R function

An R function is an R object that contains code to be executed.

» In a simplified way, an R function takes inputs and generates

outputs

» R functions are useful when we have code that is repeated in a

script and therefore help to avoid “copy-pasting” code

» An R function ideally self-contains a complex piece of code and

Is dedicated to solving one task

Barcelona @ @ Introduction to Building packagesin R

Components of an R function

An R function is created just like any other object in R and follows a

specific structure.
Name Arguments
| l
Name The name of the function add_two_numbers <- function(a, b) {
Arglments Thevglue§ passed to the total <- a + b
function (inputs) Body
R code that the function return(total)
Body
executes
= } 1
Return Value The value/s the function is

required to return (outputs)

Return Value

The return value is the last expression evaluated by the function. If the return()
expression is used then the function will output the contents of return()

Barcelona @ @ Introduction to Building packagesin R
Create a function

The package {usethis} makes it easy for us to add R functions to a
package. The function use_r () takes as input the function name
and creates the “.R" file for that function inside the “R" folder.

Create a function file in the R folder
use_r("add_two_numbers")

Place the function code inside add_two_numbers.R
add_two_numbers <- function(a, b) 1{

total <- a + b

return(total)

B&FCQ[OHB@ @ Introduction to Building packagesin R
Live Coding Example 4 @

i 1. Create the following

functions for the package

{myRpackage}
« add_two_numbers()

 subtract_two_numbers()

Barcelona@ @ Introduction to Building packagesin R

Live Coding Example 4 @

Create a function file in the R folder
use_r("subtract_two_numbers")

Place the function code inside add_two_numbers.R
subtract_two_numbers <- function(a, b) {

total <- a - b

return(total)

Barcelona @ @ Introduction to Building packagesin R

Try out the function

Before we invest more time to properly document and test the function, it
is a good idea to first check if the function works!

There are three ways to do this:

» (Messy way): Create the function arguments as objects and then run

the code inside the function line by line

» (Script way): Source the “.R" file containing the function and call the

function

0 » (Dev way): Use Toad_al1() and call the function — more on this later

Barcelona@

Live Coding Example 5 @

@ Introduction to Building packagesin R

Try out the function
add_two_numbers () using the

*Messy” and “Script” ways.

Barcelona @ @ Introduction to Building packagesin R

Document a function

Function documentation can be somewhat fiddly to work with...

Typically each “.R" file in the “R" folder (containing a function) has
its corresponding “.Rd” file in the “man” folder with the same

name (containing the documentation).

The “.Rd" file that contains the documentation in an R-specific

markup language ... luckily we do not have to worry about that!

BBI’CQ[OHB@ @ Introduction to Building packagesin R

Document a function

What we need to do in order to document a function is write
specially formatted comments above the function. These are called

roxygen comments and the package {roxygen2} creates and edits

the “.Rd" files for us!

Barcelona \Q @ Introduction to Building packagesin R

Roxygen comments

A roxygen block of comments above a function will determine the

help provided to the user about the function.

FoTitle
#I

#' Description Title The first sentence and represents the title of the documentation
#' Description The second paragraph and describes what the package does

#' @param

I @param Argument name followed by a description and what it does

ﬁ : @return @return Describes the output of the function

#' @export @export Specifies that the function is usable outside of package

Step 1: Open the “.R" file of the function

Step 2: Place cursor somewhere in the function code

Step 3: Go to==p Code=» Insert Roxygen Skeleton or CTRL + ALT + SHIFT + R

Barcelona@ @ Introduction to Building packagesin R
Live Coding Example 6 @

§ 1. Documenting the function

add_two_numbers()

2. Document the package
{myRpackage}
3. Inspect help information of the

function add_two_numbers ()

4. Check the package
{myRpackage}

Barcelona @ @ Introduction to Building packagesin R
Live Coding Example 6 @

#' Add two numbers together

#l

#' The purpose of this function is to take two numbers as inputs and add them
#' together. The numbers can be positive or negative but not NA.

#l

#' @param a (numeric) A positive or negative number

#' @param b (numeric) A positive or negative number

#l

#' @return The total sum of the two numbers
#l

#' Q@export

#' @examples
#' add_two_numbers(a =1, b = 1)
add_two_numbers <- function(a, b) {

total <- a + b

return(total)

Barcelona @ Introduction to Building packagesin R

Live Coding Example 6 @

add_two_numbers {demoConveriR} F. Documentation

Add two numbers together

Description

The purpose of this function is to take two numbers as inputs and add them together. The numbers can
be positive or negative but not NA.

Usage

add two numbers(a, b)

Arguments

E (numeric) A positive or negative number

b (numeric) A positive or negative number

Value

The total sum of the two numbers

Examples

add two numbers{a = 1,

Barcelona @ @ Introduction to Building packagesin R

Add tests to a package

The next step is to add tests. This is a formal way to test the functionality
of your package and that your functions work as you expect them to! First

we need to initialise testing for the package.

use_testthat()

The function use_testthat() from the {usethis} package adds
“Suggests: testthat” to the DESCRIPTION file. It also creates the folders
“tests/testthat/” and adds a generic script “testthat.R"” in the “tests” folder.

0 Spend some time to write unit tests for your functions!

B&FC@[OHB@ @ Introduction to Building packagesin R

Test a function

Objects
The use_test () function from {usethis} expect_equal() expect_identical()
. . expect type() expect s3 class()
takes as input the function name and expect_sd_class()
creates the “test-[name].R" file for that
Vectors
function inside the “testthat” folder with a expect_length()
. . expect 1t() expect lte() expect gt()
generic test ready to edit. expect_gte()

expect_named()

NOTE: It is the developer's responsibility to expect_setequal() expect_mapequal()

expect_true() expect false()

write the unit tests.

expect_vector()

0 Check out more information here: https://testthat.r-lib.org/reference/index.html

https://testthat.r-lib.org/reference/index.html

Barcelona@ @ Introduction to Building packagesin R

Test an R package

The function test() from the package {devtools} is used to run all of the
tests of a package. It also prints out a test report about test failures,

warnings, skipped tests and of course passes!

test() # CTRL + SHIFT + T

LAUNCH

B&FCQ[OHB@ @ Introduction to Building packagesin R
Live Coding Example 7 @

£ 1. Add testing to the package

{myRpackage}

2. Write some unit tests for the

function add_two_numbers ()
3. Test the package {myRpackage}

4. Document the package

{myRpackage}

. Check the package {myRpackage}

Barcelona \Q

Live Coding Example 7 @

test_that("add_two_numbers returns the correct value

@ Introduction to Building packagesin R

and type", {

expect_identical(object = add_two_numbers(a =

expect_identical(object = add_two_numbers(a =

expect_type(object = add_two_numbers(a = 1, b

)

test_that("add_two_numbers returns NA if one of
expect_identical(object = add_two_numbers(a =

)

test_that("add_two_numbers returns Inf (+/-) if
expect_identical(object = add_two_numbers(a =

expect_identical(object = add_two_numbers(a =

1)

1, b = 2), expected = 3)
1, b = -1), expected = 0)
= 2), type = "double")

the arguments is NA", {
NA, b = 2), expected = as.numeric(NA))

one of the arguments is infinite", {
Inf, b = 2), expected = Inf)

~-Inf, b = 2), expected = -Inf)

B&FC@[OHB@ @ Introduction to Building packagesin R

Live Coding Example 7 @

% Add testing components

J Adding 'testthat' to Suggests field in DESCRIPTION

J Setting Config/testthat/edition field in DESCRIPTION to '3
J Creating 'tests/testthat/’

J Writing 'tests/testthat.R’

% Add test for function

J Writing 'tests/testthat/test-add_two_numbers.R’

ala

* Modify 'tests/testthat/test-add_two_numbers.R'

% Check DESCRIPTION file % Run tests
Suggests: Loading demoConvertR
_ Testing demoConvertR
FEEtthat = 31010) J] OKF WS | Context
Config/testthat/edition: 3 J1 6 | add_two_numbers [0.1 s]

== Results ========= ========]
Duration: 0.2 s

[FATL O | WARN O | SKIP O | PASS 6]

Barcelona@ @ Introduction to Building packagesin R

Test drive a package

It is a good idea to regularly test drive the functionality that we
develop in our package. This means fewer bugs to worry about! An
iImportant function to use during the development cycle is the

lToad_al1(Q) of the {devtools} package.

Check Write function Write
Write function |==% | Toad_al11() |==» [(Lt — documentation —

works

tests

m
<

Barcelona @ @ Introduction to Building packagesin R

Test drive a package

Build | Debug Profile Tools Help
The function Toad_al11(Q) is very useful because it Loy L
Clean and Rebuild
allows you to interact with your package and its S Cortaenitiat
fUﬂ C ti ons. Chiev:h: Package Ctri+Shift+€ |
Build Source Package
Build Binary Package
You can think of it as a way to simulate what Document Cirl+Shift+D
.. Stop Build
happens when a package is installed and loaded Contiaure Buld Tools.

with Tibrary Q).

Tibrary(devtools)

working directory 1is set at the top level of package

load_all() # CTRL + SHIFT + L

B&FCQ[OHB@ @ Introduction to Building packagesin R
Live Coding Example 8 @

£ 1. Restart the R session

Go to =—» Session=—» Restart R
(or CTRL + SHIFT + F10)

2. Testdrive the {myRpackage}
package using the

Toad_all() function

Barcelona @ @ Introduction to Building packagesin R

Install a package

Build | Debug Profile Tools Help

Load All Ctrl+Shift+L
Install and Restart Ctrl+Shift+B

The function instal 1 () from the {devtools} Clean and Rebuld
. Test Package Ctrl+5Shift+T
package installs the package from the Checkpackage Cutesnitee |
. W Build Source Package

source state. More specifically the "R CMD Buid Binary Package

Document Ctri+5hift+D
INSTALL” command is executed behind the Stop Build

Configure Build Tools...
scenes.
install()

Alternatively the option “Install and Restart” (CTRL + SHIFT + B)

Installs the package, restarts R and loads it.

Barcelona @ @ Introduction to Building packagesin R

Uninstall a package

Files Plots Packages Help Viewer =
6' Install @ Update Q I:l .
M M Mame Description Version
An installed package is stored on your
[additivityTests Additivity Tests in the Two Way Anova with Single Sub-class 1.1-4
. ° ° Numbers
computer in a library directory. ks
"1 assertthat Easy Pre and Post Assertions 0.2.1
[| backports Reimplementations of Functions Introduced Since R-3.0.0 1.2.1
T M | | d t h M .t M d | baseddenc Tools for base64 encoding 0.1-3
y p I Ca y We u p a e, Oweve r I IS a g OO "] bayesplot Plotting for Bayesian Maodels 1.7.2
I:I EH Boost C++ Header Files 1.72.0-3
. . [hiclust BiCluster Algorithms 20.2
idea to know how to uninstall them. b
[blob A Simple S3 Class for Representing Vectors of Binary Data 1.21
('BLOBS")
I:I bmp Read Windows Bitmap (BMP) Images 0.3
. "1 boundinghox Create a Bounding Box in an Image 1.01
Th e fu n Ct I O n r.emove n pac kag e s () fro m] brew Templating Framework for Report Generation 1.0-6
[brio Basic R Input Qutput 1.1.0
. "1 broom Convert Statistical Chjects into Tidy Tibbles 0.7.3
] €50 (5.0 Decision Trees and Rule-Based Models 0.1.3.1
the {utils} package removes a package | <
I:I calools Tools: Moving Window Statistics, GIF, Baseb4, ROC AUC, etc 1.18.0
1 mm el mmt Al Mmmmme 4 Dmciim sl Tl e 11N

from the library directory.

remove.packages()

You can also navigate to the “Packages” tab, search for the
package and click on the cross to uninstall the package

Barcelona@

Live Coding Example 9 @

@ Introduction to Building packagesin R

Install the {myRpackage}
package

2. Try out the package

3. Uninstall the {myRpackage}
package

Barcelona @ @ Introduction to Building packagesin R
Install a package from GitHub

We can also install an R package that is available on a public GitHub repo.
The {devtools} package offers the function install_github() which
installs a package directly from GitHub (GitHub username and repository
name are needed for this function).

For example:

install_github("tidyverse/dplyr"™)

This is useful when a package is not available to install fromm CRAN or

9 you want to install the latest in-development version of a package.

Barcelona @ @ Introduction to Building packagesin R

Add the pipe operator to your package

The pipe operator (%>%) from the

[magrittr} package is extremely Description
Does setup necessary to use magrittr's pipe operator, 3>% in
useful when writing code and your package. This function requires the use roxygen.

. . » Adds magrittr to "Imports" in DESCRIPTICN.

especially for data transformations. _ _ o

» |mports the pipe operator specifically, which is
necessary for internal use.

To use the pipe operator within a

» Exports the pipe operator, if export = TRUE, which

package that yOU are developing Ca” IS necessary to make %>% available to the users of

your package.

the function use_pipe() from

{usethis} which carries out the

necessary setup.

Barcelona @ @ Introduction to Building packagesin R

Use other packages in your package

It is very likely that you will want to use functionality from another
package within your package. To do this you need to add the “external”
package to the “Imports’ field of the DESCRIPTION file.

An easy way to do this is by using the function use_package() from

{usethis}. For example:
use_package("dplyr™)

This adds the {dplyr} package to the “Imports” field of the DESCRIPTION

file. It is recommended to use the :: operator when using functions from

other packages. For example: dplyr::filter()

Barcelona @ @ Introduction to Building packagesin R

Keyboard Shortcuts

Below is the collection of keyboard shortcuts seen in this course that

helps speed up the development cycle of an R package.
" shortcut | Descripon
CTRL + SHIFT + D Runs document () — build all the documentation for a package
CTRL + SHIFT + E Runs check () — builds and checks a package
CTRL+ ALT + SHIFT +R Go to “Code” then “Insert Roxygen Skeleton”
CTRL+SHIFT+ T Runs test() — run all the tests of a package
CTRL + SHIFT + L Runs Toad_al1() — enables test driving a package

CTRL + SHIFT + F10 Go to “Session” then “Restart R” to Restart R session

CTRL +SHIFT +B Installs the package, restarts R and loads it

Barcelona

Package

@ Introduction to Building packagesin R

Package Development: : CHEAT SHEET

devtools

Package Structure
A package is a convention for organizing files into directories.

This sheet shows how to work with the 7 most common parts of
an R package:

& Package

[DESCRIPTION IE=imm
CR/
[tests/ [__tesT |
0 man/

[vignettes/

O data/ ADD DATA
B NAMESPACE | orGANIZE |

The contents of a package can be stored on disk as a:

+ source - a directory with sub-directories (as above)

+ bundle - asingle compressed file (tar.gz)

+ binary - a single compressed file optimized for a specific 05
O installed into an R library (loaded into memary during an R

session) or archived nline in a repository. Use the functions
below to move between these states.

ool
Piid
§ii H
install.packages() LRAP—'I
install packagesltype = aurce] CRAN———» @)
®
RCMD install e
*—f——e
devtools: installl) ®
devtools- build() {]

devtools:install_githubi] &ithubs
deviools- load_all()
Build & Reload [RStudio)

Setup (I DESCRIPTION)
The Il DESCRIPTION file describes your wark, sets up how your
package will wark with other packages, and applies a copyright.
[You must have a DESCRIPTION file
[+ Add the packages that yoursreies on with
devtools use_package()
Adds a package to the Imports or Suggests field

cco MIT GPL-2
Mostringsattached, MiTlicenseappliesto GPL2 license applies to your
your code ife-shared. code, and aff code anyone

kage: mypackage
Title: Title of Package
Versio]

isdley", “Wickhan", email =
le = c(aut”, cret))
kage does (one paragraph)
Import packages that
‘must have to work. R will install them
when it installs your package.

‘Suggest packages that are not very
essential to yours. Users ean install
them manually, or not, as they like.

Depends: R (>= 3.1.8)

Suggests:
knitr (>= 0.1.8)

Development cheat sheet

Write Code (O R/)

All of the R code in your package goes in LI R/. A package with just
an R directory is stilla very useful package
[V create a new package project with
devtools create("path/to/name")
Create a template to developinto package.
[save your code in L R/ as scripts (extension .R)

'WORKFLOW
1. Edityour code.
2. Load your code with one of
devtools: load_allf)
Re-loads all soved files in CIR/ into memary.
ctrljCmd + Shift + L (keyboard shorteut)
Saves all open files then calls load_allf).
3. Experiment in the console.
4. Repeal.
. Use with r-pkgs.had.co.
+ Click on a function and press F2 to open its definition

Test (D tests/)

Use [tests/ to store tests that will alert you if your code breaks.

8 Add a tests] directory
8 Import testthat with de.to0l< use_testthat{), which
sets up package to use automated tests with testthat
8 Wirite tests with context(), test(), and expect statements
[V saveyourtests as Rilesin testsjrestthat]
'WORKFLOW
1. Modify your code of tests.
2. Test your code with one of

deviools-test()
Runs all tests in [tests/
Ctrl/Cmd + Shift+ T
(keyboard shorteut)
3. Repeat until all tests pass

Example Test

context("Arithmetic"”}

test_that{"Math works", {
expect_equalll + 1, 2)

expect_equal(1 + 2, 3)
expect_equal(1 + 3, 4)

Expectstatement Tests
s equal within small rumerical telerance?
expect identicall) s exactly equal?

Document ((J man/)

[man/ contains the documentation for your functions, the help
pagesin your package.

@ Use roxygen comments to document each function
beside its definition

~ feach exported data set

g Include helpful examples for each function

WORKFLOW

L. Add roxygen comments in your R files
2. Convert roxygen comments into documentation with one of:
devtools - document()
Converts roxygen comments to R files and places
them inCJ man/. Builds NAMESPACE.
CtrljCmd + Shift + D [eyboard Shorteut)
3. Open help pages with ? to preview documentation
4. Repeat

RAFORMATTINGTAGS

text} i com}
\strongfbold text} \hreffurlj{display}
\codeffunction(args)} \urlfurl}
\pkg{package}

\link[=dest}{display}
\donttest{code} \eodef\linkpackagel{function}}

\deqn{a + b (block]}
\eqnfa+ b (inline]}

\tabularfler}{
left \tab centered \tab right \er
celljtabeell \tabeell \er
1

ROXYGEN2
The roxygen2 package lets you write 0
documentation inline n your R files with a
shorthand syntax. devtools implements roilin2
roxygen2 to make documentation. &
+ Add roxygen documentation as comment lines
that begin with #.
+ Place comment lines directly above the code that defines the
object documented.
+ Place a rorygen @ tag [right) after #'to supply a specific
section of documentation.

+ Untagged lines will be used to generate a title, description,
and details section (in that order)

-
P
#' gparam x A number.

#* gparam y A number.

#' greturn The sum of \codelx} and \code(yl.
gexanples

Add together two numbers.

export
add <- function(x, y) {
Xy

¥

common oGNS
@aliases @inheritParams @seealso
@concepts @keywords. @format
@describeln @param @source data
@examples @rdname @include
@export @return @slot 54
@family @section @field RC

Teach (O vignettes/)

[vignettes; holds documents that teach your users how to solve real problems with your tools.

Add Data (D data/)

The (3 data/ directory allows you to
include data with your package.

devtools

C,J Save data as .Rdata files (suggested)
C‘,/ Store data in one of dataj, R/Sysdata.rda, inst/extdata
@ Always use LazyData: true in your DESCRIPTION file.

deviools- use_data()
Adds a data object to data/
(R/Sysdata.rda if internal = TRUE)
deviools-use_data_raw()
Adds an R Script used to elean a data set to data-rav/.
Includes data-raw/ on Rbuildignore.
Store data in
+ dataf to make data available to package users
+ Rjsysdata.rda to keep data interal for use by your
functions.
1o make ilable for
parsing examples. Access this data with system.file()

Organize (i NAMESPACE)

The [NAMESPACE file helps you make your package self-
contained: it won't interfere with other packages, and other
packages won't interfere with it.

(& Export functions for users by placing @export n their
Foxygen comments.

Impart abjects from other packages with
[V package::object (recommended or @import,
@importFrom, @importClassesFrom,
(not always

WORKFLOW

_ Create a Civignettes/ directory and a template vignette with —
libraryl) + Search for a function with Ctrl +.. expect matchl) matches specified siing o regular (T4 s & - b o plate vign itle: “Vignette Title* 1. Modily your code or tests.
expect_output) prins specied gt cutocls-use_vignette() . 2. Document your package (deviools document())
T visitr-pkgs.had.co.nz to e] P 5 = m Check NAMESPACE
deviools-use_build_ignore(le”) learn much mare about expect warningl) dispiays specified warming? W/ Append YAML headers ta your vignettes (like right) 3. Check NAME
Adds file to _Rbuildignore, a list of files that will not be included wrlttms;lrdmpghlshms expect_error() throws specified error? 7 Witethe body of your vignettes in R Markdown V’gﬁﬁ;:;t;[nmmmm“m Titie} 4. Repeat until NAMESPACE is correct
when package is built. packag sxpect i) e (cmarkdown rstudio com) *\Vignettetngine{knitr:: rmarkdown}
. e st rotamy FAECE] \usepackage ut?8] {inputenc} SUBMIT YOUR PACKAGE
StUdiO - expect truei) retums TRUE? . . .
e e e o P PPy e Studio

RiStudia® is a rademark of RStudic, Inc. = CC 8Y SA RStudic - infogrstuio.com » L

had.co.nz/ + devioals L5.1 + Updated: 201501

0 https://github.com/rstudio/cheatsheets/raw/master/package-development.pdf

https://github.com/rstudio/cheatsheets/raw/master/package-development.pdf

Barcelona @ @ Introduction to Building packagesin R

Next online R event!

Build Interactive {shiny} Apps to Share Your Work With Anyone!

Use@slo

Build Interactive {shiny} Apps to
Share Your Work With Anyone!

Speakers: Andreas Botnen Smebye (NG, Oslo)
Christian Wilhelm Mohr (NIBIO, As)

Time: Thursday, 20 May 2021, 17:00 CET
Place: Zoom

https://Mww.meetup.com/Oslo-useR-Group/events/277702734/

https://www.meetup.com/Oslo-useR-Group/events/277702734/

Barcelona@

@ Introduction to Building packagesin R

Thank you to our sponsors and partners!

MANGO @)studic

SOLUTIONS

