
Introduction to
Building packages in R

1 BarcelonaR - Workshop
Nicolas Attalides

https://www.linkedin.com/in/nicolas-attalides

Who am I?

2

 Name: Nicolas Attalides

 Coding in since: 2005 (yes that’s before RStudio!)

 Profession: Senior Data Scientist and trainer (6+ yrs.)

 Education: PhD in Statistical Science from UCL (2015)

 R Status: A never-ending evolving R dinosaur

 Hobbies: Tennis and coding (not at the same time)

Wi-Fi

 Network Name: N/A

 Password: N/A

Resources

 R (version 3.6.3)

 RStudio (version 1.4.1106)

Packages

 {tidyverse} (version 1.3.0)

 {devtools} (version 2.3.2)

 {usethis} (version 2.0.1)

3

Workshop Setup:

What is an R package?

4

An package is like a collection of

code, data and documentation that

follow some standard rules and

formats.

This is the best way for an R user to

share their work and enable others to

use the functionality that is developed.

Comprehensive R Archive Network (CRAN)

5

The central repository of R packages is called the Comprehensive R

Archive Network (CRAN). This contains an archive of R distributions

and has more than 17,000 packages ready to be installed and used.

Find out more about CRAN here: https://cran.r-project.org/

https://cran.r-project.org/

Topics

6

 Workshop aim:

Learn how to build an R package in an easy step-by-step approach.

 Topics:

• Learn how to create an R package within

• Understand the package structure and its various components

• Learn how to write, document and test functions in for a package

• Learn how to check, build and install an R package

Create an R package

7

Open the File options and select

“New Project…”

Then select

“New Directory

Create an R package

8

Select “R Package”

Create an R package

9

Type in package

name

Select the location

of the package

Select “Create

Project”

Congratulations! You created an R package*!

10

*An empty package with the basic structure…

Create an R package

11

library(devtools)

create_package("C:/Users/Nicolas/Desktop/myRpackage")

An alternative way to create an R package with the same result is

to use the create_package() function from the {usethis} package.

Package path Package name

This opens a new RStudio session with the new project loaded

Congratulations! You created an R package*!

12

*An empty package with the basic structure…

13

Live Coding Example 1

1. Load the {devtools} package

2. Create an empty R package called

“myRpackage”

Note:

❖ The functionality of this package

will be kept simple

❖ The main goal is to help the

learning process and practice the

package development cycle!

14

File and Folder structure of an R package

The man folder will be missing when you use the create_package() function
but it will be automatically created with the first documentation step

The R folder contains the code for the

functions

The man folder contains the documentation

for the functions

Project file

Specifies which

files and folders

not to include

in the package

when installed

We cover these files later

Document an R package

15

document() # CTRL + SHIFT + D

The function document() from {devtools} is used to build all the

documentation for a package.

For an empty package this function will simply create the “man”

folder if it does not exist.

Check an R package

16

check() # CTRL + SHIFT + E

The function check() from {devtools} automatically builds and

checks a package. It runs through a number of checks and will

return a summary of the check results.

17

Live Coding Example 2

1. Load the {devtools} package

2. Document the package

{myRpackage}

3. Check the package

{myRpackage}

The DESCRIPTION file is used to

store important metadata about the

package. For example:

 What is the package title

 What is the package version

 Who to contact

 Who can use it (the license)

 What other packages are needed

for it to work

18

DESCRIPTION file

DESCRIPTION fields

19

Below is some important guidelines to follow for the DESCRIPTION file fields.

Field Description

Title This is typically a one line description of the package. It should be plain text, not more
than 65 characters long, capitalised like a title, and NOT end in a period!

Description
This is a more detailed text about your package. It can be multiple sentences but it is
limited to one paragraph, each line must be no more than 80 characters wide and
new lines must be indented with 4 spaces!

Imports
The packages that are listed in this field must be installed on your computer for your
package to work because they are being used by your package. If any package is
missing, it will be automatically installed when your package is installed.

Suggests
The packages that are listed in this field can be used by your package but they are not
required. If any package is missing, it will not be automatically installed when your
package is installed.

The Version field of the DESCRIPTION

file shows the package’s version number.

 Typically a version number is made up

of three numbers:

<major>.<minor>.<patch>

For example: 1.3.0

 A package that is in-development

usually has ends with “9000”

For example: 1.3.0.9000

20

Package version

Example of DESCRIPTION file of the
{devtools} package

21

Live Coding Example 3

1. Edit the DESCRIPTION file with

the metadata about the

package (Title and Description)

and your details (Author)

2. Save the changes

3. Document the package

{myRpackage}

4. Check the package

{myRpackage}

The NAMESPACE file can be quite

confusing and is considered an

advanced topic (hence the warning!).

In a simplified way, it is the file that

controls the communication between

packages and their functions. For

example, it manages the functions to

export (from your package) and

functions to import (from other

packages).

22

NAMESPACE file

An R function is an R object that contains code to be executed.

 In a simplified way, an R function takes inputs and generates

outputs

 R functions are useful when we have code that is repeated in a

script and therefore help to avoid “copy-pasting” code

 An R function ideally self-contains a complex piece of code and

is dedicated to solving one task

23

What is an R function

Components of an R function

24

An R function is created just like any other object in R and follows a

specific structure.

Component Description

Name The name of the function

Arguments The values passed to the
function (inputs)

Body R code that the function
executes

Return Value The value/s the function is
required to return (outputs)

The return value is the last expression evaluated by the function. If the return()
expression is used then the function will output the contents of return()

Return Value

Body

ArgumentsName

The package {usethis} makes it easy for us to add R functions to a

package. The function use_r() takes as input the function name

and creates the “.R” file for that function inside the “R” folder.

Create a function

25

Create a function file in the R folder
use_r("add_two_numbers")

Place the function code inside add_two_numbers.R
add_two_numbers <- function(a, b) {

total <- a + b

return(total)

}

26

Live Coding Example 4

1. Create the following

functions for the package

{myRpackage}

• add_two_numbers()

• subtract_two_numbers()

27

Create a function file in the R folder
use_r("subtract_two_numbers")

Place the function code inside add_two_numbers.R
subtract_two_numbers <- function(a, b) {

total <- a - b

return(total)

}

Live Coding Example 4

Before we invest more time to properly document and test the function, it

is a good idea to first check if the function works!

There are three ways to do this:

 (Messy way): Create the function arguments as objects and then run

the code inside the function line by line

 (Script way): Source the “.R” file containing the function and call the

function

 (Dev way): Use load_all() and call the function – more on this later

28

Try out the function

29

Live Coding Example 5

Try out the function

add_two_numbers() using the

“Messy” and “Script” ways.

Document a function

30

Function documentation can be somewhat fiddly to work with…

Typically each “.R” file in the “R” folder (containing a function) has

its corresponding “.Rd” file in the “man” folder with the same

name (containing the documentation).

The “.Rd” file that contains the documentation in an R-specific

markup language … luckily we do not have to worry about that!

Document a function

31

What we need to do in order to document a function is write

specially formatted comments above the function. These are called

roxygen comments and the package {roxygen2} creates and edits

the “.Rd” files for us!

Roxygen comments

32

A roxygen block of comments above a function will determine the

help provided to the user about the function.
Comment Description

Title The first sentence and represents the title of the documentation

Description The second paragraph and describes what the package does

@param Argument name followed by a description and what it does

@return Describes the output of the function

@export Specifies that the function is usable outside of package

Step 1: Open the “.R” file of the function

Step 2: Place cursor somewhere in the function code

Step 3: Go to Code Insert Roxygen Skeleton or CTRL + ALT + SHIFT + R

33

Live Coding Example 6

1. Documenting the function

add_two_numbers()

2. Document the package

{myRpackage}

3. Inspect help information of the

function add_two_numbers()

4. Check the package

{myRpackage}

34

#' Add two numbers together
#'
#' The purpose of this function is to take two numbers as inputs and add them
#' together. The numbers can be positive or negative but not NA.
#'
#' @param a (numeric) A positive or negative number
#' @param b (numeric) A positive or negative number
#'
#' @return The total sum of the two numbers
#'
#' @export
#' @examples
#' add_two_numbers(a = 1, b = 1)
add_two_numbers <- function(a, b) {

total <- a + b

return(total)

}

Live Coding Example 6

35

Live Coding Example 6

Add tests to a package

36

use_testthat()

The next step is to add tests. This is a formal way to test the functionality

of your package and that your functions work as you expect them to! First

we need to initialise testing for the package.

The function use_testthat() from the {usethis} package adds

“Suggests: testthat” to the DESCRIPTION file. It also creates the folders

“tests/testthat/” and adds a generic script “testthat.R” in the “tests” folder.

Spend some time to write unit tests for your functions!

Test a function

37

The use_test() function from {usethis}

takes as input the function name and

creates the “test-[name].R” file for that

function inside the “testthat” folder with a

generic test ready to edit.

NOTE: It is the developer’s responsibility to

write the unit tests.

Check out more information here: https://testthat.r-lib.org/reference/index.html

https://testthat.r-lib.org/reference/index.html

Test an R package

38

test() # CTRL + SHIFT + T

The function test() from the package {devtools} is used to run all of the

tests of a package. It also prints out a test report about test failures,

warnings, skipped tests and of course passes!

39

Live Coding Example 7

1. Add testing to the package

{myRpackage}

2. Write some unit tests for the

function add_two_numbers()

3. Test the package {myRpackage}

4. Document the package

{myRpackage}

5. Check the package {myRpackage}

40

test_that("add_two_numbers returns the correct value and type", {
expect_identical(object = add_two_numbers(a = 1, b = 2), expected = 3)

expect_identical(object = add_two_numbers(a = 1, b = -1), expected = 0)

expect_type(object = add_two_numbers(a = 1, b = 2), type = "double")
})

test_that("add_two_numbers returns NA if one of the arguments is NA", {
expect_identical(object = add_two_numbers(a = NA, b = 2), expected = as.numeric(NA))

})

test_that("add_two_numbers returns Inf (+/-) if one of the arguments is infinite", {
expect_identical(object = add_two_numbers(a = Inf, b = 2), expected = Inf)

expect_identical(object = add_two_numbers(a = -Inf, b = 2), expected = -Inf)
})

Live Coding Example 7

41

❖ Add testing components

❖ Check DESCRIPTION file

❖ Add test for function

❖ Run tests

Live Coding Example 7

Test drive a package

42

It is a good idea to regularly test drive the functionality that we

develop in our package. This means fewer bugs to worry about! An

important function to use during the development cycle is the

load_all() of the {devtools} package.

Check
function

works

Edit
functionload_all()

Write function load_all()

Write function

documentation

Write

tests

Test drive a package

43

library(devtools)

Working directory is set at the top level of package

load_all() # CTRL + SHIFT + L

The function load_all() is very useful because it

allows you to interact with your package and its

functions.

You can think of it as a way to simulate what

happens when a package is installed and loaded

with library().

44

Live Coding Example 8

1. Restart the R session

Go to Session Restart R

(or CTRL + SHIFT + F10)

2. Test drive the {myRpackage}

package using the

load_all() function

Install a package

45

install()

The function install() from the {devtools}

package installs the package from the

source state. More specifically the “R CMD

INSTALL” command is executed behind the

scenes.

Alternatively the option “Install and Restart” (CTRL + SHIFT + B)

installs the package, restarts R and loads it.

Uninstall a package

46

remove.packages()

An installed package is stored on your

computer in a library directory.

Typically we update, however it is a good

idea to know how to uninstall them.

The function remove.packages() from

the {utils} package removes a package

from the library directory.

You can also navigate to the “Packages” tab, search for the
package and click on the cross to uninstall the package

47

Live Coding Example 9

1. Install the {myRpackage}

package

2. Try out the package

3. Uninstall the {myRpackage}

package

Install a package from GitHub

48

install_github("tidyverse/dplyr")

We can also install an R package that is available on a public GitHub repo.

The {devtools} package offers the function install_github() which

installs a package directly from GitHub (GitHub username and repository

name are needed for this function).

For example:

This is useful when a package is not available to install from CRAN or

you want to install the latest in-development version of a package.

The pipe operator (%>%) from the

{magrittr} package is extremely

useful when writing code and

especially for data transformations.

To use the pipe operator within a

package that you are developing call

the function use_pipe() from

{usethis} which carries out the

necessary setup.

49

Add the pipe operator to your package

Use other packages in your package

50

use_package("dplyr")

It is very likely that you will want to use functionality from another

package within your package. To do this you need to add the “external”

package to the “Imports” field of the DESCRIPTION file.

An easy way to do this is by using the function use_package() from

{usethis}. For example:

This adds the {dplyr} package to the “Imports” field of the DESCRIPTION

file. It is recommended to use the :: operator when using functions from

other packages. For example: dplyr::filter()

Keyboard Shortcuts

51

Below is the collection of keyboard shortcuts seen in this course that

helps speed up the development cycle of an R package.

Shortcut Description

CTRL + SHIFT + D Runs document() – build all the documentation for a package

CTRL + SHIFT + E Runs check() – builds and checks a package

CTRL + ALT + SHIFT + R Go to “Code” then “Insert Roxygen Skeleton”

CTRL + SHIFT + T Runs test() – run all the tests of a package

CTRL + SHIFT + L Runs load_all() – enables test driving a package

CTRL + SHIFT + F10 Go to “Session” then “Restart R” to Restart R session

CTRL + SHIFT + B Installs the package, restarts R and loads it

52

Package Development cheat sheet

https://github.com/rstudio/cheatsheets/raw/master/package-development.pdf

https://github.com/rstudio/cheatsheets/raw/master/package-development.pdf

Next online R event!

53

Build Interactive {shiny} Apps to Share Your Work With Anyone!

https://www.meetup.com/Oslo-useR-Group/events/277702734/

https://www.meetup.com/Oslo-useR-Group/events/277702734/

Thank you to our sponsors and partners!

54

