
Moving Projects into
Production (Learnings from
working at a Tech Startup)
Christopher Collins

September 2019

About Me

● Data Scientist at Glovo (since April 2019), working in the Customer Intelligence &
Insights team

● Gravitated towards Data Science whilst trying to predict football games in
university

● First job as a Data Scientist in the UK, using R, SQL and Tableau

● Moved to Glovo after 2 years, now I’m primarily using Python & SQL, but still try to
keep up with R

Aims of the talk?

● Main focus on ‘productionising’ projects and good coding practices

● What kind of projects? - Any projects designed to do something, with more of a
focus on projects that output data regularly and have a high business impact

● Productionising? Many factors, will get onto that!

● Lots to cover.. Presentation = high-level overview + lots of guides/articles/examples

R isn’t for production?

● Everyone benefits from projects that are robust, well written and can be
automated (if required), even if the project is a simple report.

ExpectationReality

Team Members Intern YouTeam

R isn’t for production?

 Company Drive

Making projects production ready

To me, a production level project is one that is:

1. Readable

2. Robust

4. Modular

3. Version Controlled

5. Standalone

6. Automatable

7. Documented

Making projects production ready

To me, a production level project is one that is:

1. Readable - Easy to understand, consistent structure

2. Robust - Hard to break, easy to fix

4. Modular - Broken down into small, manageable pieces

3. Version Controlled - Easy to track changes, easy for others to collaborate

5. Standalone - Can run on other systems without issues https://www.docker.com/

6. Automatable - Does not require someone to ‘press play’ on a regular basis

7. Documented - Everything required to run/maintain the project in one place

https://www.docker.com/

Example

Take a .csv stored online, and host it as a Dash web app.

Download Data Host Web App

Readability - Style Guides

https://style.tidyverse.org/ <- Tidyverse Style Guide (recommended)

https://google.github.io/styleguide/Rguide.html <- Google’s R style guide

Useful Packages (for Tidyverse Style Guide)

Lintr (passive) - Automatic checking that you are conforming to the style
guide while coding
Styler (aggressive) - Restyle your code automatically

“Good coding style is like correct punctuation: you can manage without it,
butitsuremakesthingseasiertoread”

https://style.tidyverse.org/
https://google.github.io/styleguide/Rguide.html

Robustness

● Making code easy to fix - Testing and logging

● Why tests?
○ You can never think of everything that could

go wrong
○ Pinpoint exactly where an issue occured
○ Add new features without fear

● Types of tests:
○ “Offline Testing” - Unit test, Integration Test,

System Test
○ “Run-Time Testing” - Assert statements

● Great guide on unit testing:
Unit testing with test_that
Integration testing and more

 “Input, Execute, and Assert”

Use the url of something that won’t change!
tests/testthat/R: testthat

Python: unittest, nose

https://towardsdatascience.com/unit-testing-in-r-68ab9cc8d211
https://medium.com/@Iren.Korkishko/introduction-to-integration-testing-8c66ae64e003

Runtime Testing

● Use in addition to other tests to increase
robustness

● Assertthat package - Clean assert statements
with custom messages

Ditching print() for loggers

● Walk users through your code as it runs,
with varying levels of detail.

● You want detailed messages for
debugging, but not see them every time
you run the project

● Save messages to a file (log file) for
post-execution analysis.

● Good logging can save HOURS of
debugging

R Packages: logging, logger
Python: logger

Model performance dashboards

● Help you to find the cause of problems much
faster.

● Check that model inputs and outputs are as
expected.

● Check that features follows the same distributions
as they did when the model was trained.

● Check for duplicates

Version Control (Using GitHub as an example)

● GitHub lets you run multiple versions
(branches) of a project in parallel, allowing
you to develop/test changes without
affecting the original (master) branch.

● Testing all changes on a development
branch minimises the chance of error
(essential for anything high-impact).

● Packages can be installed by GitHub (super
handy!

● Promotes good coding practices (especially
if other team members check your code!)

● Free private repos for up to 4 contributors (5
for BitBucket)

Version Control (Using GitHub as an example)

Why GitHub has helped me develop as a data
scientist:

● Knowing other people will be reading my
code helps me focus on making it more
understandable.

● Reading other people’s code makes me
realise the importance of style guides

● Branching lets me work on lots of
experimental features without affecting the
project operation

● Easier to figure out where bugs were
introduced

Great guide to get started:
https://guides.github.com/introduction/flow/

https://guides.github.com/introduction/flow/

Version Control - Pre-commit Hooks

● Bonus: You can set up hooks, which perform
operations on your code when before/after you
commit changes to an online branch (other
options available).

● Examples include:
○ Code formatting: Formats all of your

code to adhere to a particular style guide)
○ Linting: Searches your code for potential

run-time errors
○ Check that all files contain valid R code
○ Check that packages are ordered

alphabetically

● (Guide for implementing pre-commit hooks in
R using GitHub):
https://github.com/lorenzwalthert/pre-commit-hooks

Pre-commit works for any language!

https://github.com/lorenzwalthert/pre-commit-hooks

Automation - EC2 (AWS)

What is EC2? - Cloud computing that allows you to rent small servers and run
code. Advantages:

● Always running, very small chance of downtime as the server is maintained
by amazon.

● Pay for what you use
● Easy to set up R-Studio Server! (link below)
● Expose ports to local network to let others view your web apps

Setting up an EC2 server (Amazon Guide)
Setting up EC2 & R Studio

Run multiple projects simultaneously
using ‘screen’ inside EC2
https://linuxize.com/post/how-to-use-linux-scr
een/

https://docs.aws.amazon.com/efs/latest/ug/gs-step-one-create-ec2-resources.html
https://aws.amazon.com/blogs/big-data/running-r-on-aws/
https://linuxize.com/post/how-to-use-linux-screen/
https://linuxize.com/post/how-to-use-linux-screen/

Automation - Job Scheduling with Jenkins and EC2

What is Jenkins? - Open-source job scheduling tool that works for
almost any combination of languages and repositories.
Advantages:

● Scheduled execution of projects
● Connect Jenkins and GitHub through web-hooks to trigger

build actions
● Email alerts if a build fails

Jenkins: The Definitive Guide (400 page book)
Running Jenkins on EC2

Churn
Model Orders

Forecasts

Courier
Forecasts

https://www.bogotobogo.com/DevOps/Jenkins/images/Intro_install/jenkins-the-definitive-guide.pdf
https://medium.com/@mohan08p/install-and-configure-jenkins-on-amazon-ami-8617f0816444

Jenkins Home Dashboard

Thanks!

https://github.com/qemtek/footballTableDemo

https://github.com/qemtek/footballTableDemo

Modification to EC2 setup code to get R Studio to work (if it dosent first time)

Paste this code into the ‘Advanced Details’ section when you create the EC2 instance, it worked for me :)

#!/bin/bash
#install R
yum install -y R

#install RStudio-Server 1.0.153 (2017-07-20)
wget https://download2.rstudio.org/rstudio-server-rhel-1.0.153-x86_64.rpm
yum install -y --nogpgcheck rstudio-server-rhel-1.0.153-x86_64.rpm
yum install libxml2-devel
yum install libcurl-devel
yum install openssl-devel

rm rstudio-server-rhel-1.0.153-x86_64.rpm

#install shiny and shiny-server (2017-08-25)
R -e "install.packages('shiny', repos='http://cran.rstudio.com/')"
wget https://download2.rstudio.org/server/centos6/x86_64/rstudio-server-rhel-1.2.5001-x86_64.rpm
sudo yum install rstudio-server-rhel-1.2.5001-x86_64.rpm
Rm rstudio-server-rhel-1.2.5001-x86_64.rpm

#add user(s)
useradd username
echo username:password | chpasswd

Additional code I had to run to get packages to install
ln -s /usr/lib/gcc/x86_64-amazon-linux/6.4.1/include/omp.h /usr/local/include/
ln -s /usr/lib/gcc/x86_64-amazon-linux/6.4.1/libgomp.spec /usr/lib64/libgomp.spec
ln -s /usr/lib64/libgomp.so.1.0.0 /usr/lib64/libgomp.so
sudo ln -s /usr/lib/gcc/x86_64-amazon-linux/6.4.1/libgfortran.so /usr/lib/libgfortran.so
sudo ln -s /usr/lib/gcc/x86_64-amazon-linux/6.4.1/libquadmath.so /usr/bin/libquadmath.so

