Informing business decisions with machine learning: a case study

Pol Blasco

Marfeel & Data

Marfeel

- What is it?
 - A free publisher platform
 - Publisher articles are crawled, and rendered with an fast-optimized UX with tones of tech behind, and new monetization technology
 - Marfeel manages the monetization, and shares the revenue with the publisher
- What publishers get out of it?
 - Reduced IT costs, fast mobile web, top-notch web and ad tech, and \$\$\$
- Numbers
 - Works with 600 publishers
 - Manges 1B monthly visits
 - 3TB / day

Marfeel Data (6m ago)

A group by and three counts

{ "aggs": { "2": { "date_histogram": { "field": "ts", "interval": "1d", "time_zone": "Europe/Berlin", "min_doc_count": 1 }. "aggs": { "3": { "filters": { "filters": { "sessions with swipe": { "query_string": { "query": "interaction_action: swipe", "analyze_wildcard": true, "default_field": "*" }. "sessions with successful swipe": { "query_string": { "query": "interaction_action: swipe && interaction_action_detail: successful", "analyze_wildcard": true, "default_field": "*" }. "Other Events": { "query_string": { "query": "!interaction_action: swipe", "analyze_wildcard": true, "default_field": "*" }. "aggs": { "1": {

"field": "sid" "size": 0, "_source": { "excludes": [] }, "stored_fields": [*** 1. "script_fields": {}, "docvalue_fields": [{ "field": "ts", "format": "date_time" "query": { "bool": { "must": [{ "match_phrase": { "type": { "query": "user_event" "match_phrase": { "mds": { "query": "marfeel_browser"

"match_phrase": { "dh": { "query": "m.washingtontimes.com" "range": { "ts": { "gte": 1580855126660, "lte": 1580856026660, "format": "epoch_millis' "match_phrase": { "type": { "query": "user_event" "match_phrase": { "mds": { "query": "marfeel_browser" "match_phrase": { "dh": { "query": "m.washingtontimes.com"

1.

ElasticSearch + R

- Kibana is great
- No powerful aggregation framework, no joints, no filtering by large arrays.
- Data retrieval is slow process
- Elastic package
 - Provides API connection
 - Pagination, error handling, authentification...
 - Does NOT help writing the queries
- MrfElastic
 - Helps building some ES queries
 - Still very faulty

```
baseQuery <- TERM_filter("mdt", "s") %>%
append(TERM_filter("mds", "marfeel_browser")) %>%
append(RANGE_filter("ts", fromTs, toTs)) %>%
append(OR_operator("dh", tenantList))
```


Marfeel Data (today)

SnowFlake + R

- As fast as you want to pay
- Snowflake + R
 - SQL based DB
 - Native connection with R and dplyr (<u>here</u>, <u>here</u>, and <u>here</u>)

SnowFlake + R

library("RJDBC")
library("dplyr")
library("dplyr.snowflakedb")

my_db <- src_snowflakedb(user = "POL_BLASCO", password = XXXXXX)
UJ interactions <- tbl(my db, "UJ RETENTION NAVIAGTION BY CID")</pre>

#UJ_interactions %>% mutate() %>% goup_by
#This is data frame which you can usedplyr and it will translate it to SQL and execute in snowflake.

- collect(): download the table from snowflake to where R code is executed
- compute(): store the result of a query in snowflake
- collapse(): get the SQL query that will execute

The Question

The Question

Successful UX changes

- Readers are more engaging
- Content consumption metrics go up
 - More page views
 - More reading time
 - More scroll down
 - More "high value" actions
 -

and the second sec	-			
I ho	()	10	o t:	0 0
100				
	~~~			<b>U</b> II

# **Content Consumption**

umption	scrollingSpeed	discoberedViewPorts	ndu	sessionLength	amountOfInteractions	sessionLengthCorrecte	scrolledViewPorts	netScrolledViewPorts	height_ads_pixels	scroll_ads_pixels	adsRatio	pctContentConsumed	adsRatioLoad	_ 1
scrollingSpeed	1	0.09	-0.39	-0.69	-0.36	-0.66	0.08	0.21	0.08				-0,07	1
discoberedViewPorts	0.09	1	0.55	0.48	0.41	0.33	0.83	0.78	0.65	0.51		-0.2	-0.32	- 0.8
npv	-0.39	0.55	1	0.73	0.85	0.59	0.63	0.45	0.51	0.49	0.26	0.26	R:851	- 0.6
sessionLength	-0.69	0.48	0.73	1	0.62	0.86	0.59	0.47	0.51	0.48	0.29	0.3	0.13	- 0.4
amountOfInteractions	-0.36	0.41	0.85	0.62	1	0.52	0.53	0.39	0.45	0.45	0.26	0.33	0.13	0.4
sessionLengthCorrected	-0.66	0.33	0.59	0.86	0.52	1	0.49	0.38	0.45	0.44	0.31	0.34	0.22	- 0.2
scrolledViewPorts	0.08	0.83	0.63	0.59	0.53	0.49	1	0.96	0.85	0.82	0.46	0.32	0.11	- 0
netScrolledViewPorts	0.21	0.78	0.45	0.47	0.39	0.38	0.96	1	0.82	0.79	0.46	0.33	0.14	0.2
height_ads_pixels		0.65	0.51	0.51	0.45	0.45	0.85	0.82	1	0.92	0.71	0.38	0.45	2002
scroll_ads_pixels	0.08	0.51	0.49	0.48	0.45	0.44	0.82	0.79	0.92	1	0.86	0.57	0.55	0.4
adsRatio			0.26	0.29	0.26	0.31	0.46	0.46	0.71	0.86	1	0.65	0.8	0.6
pctContentConsumed		-0.2	0.26	0.3	0.33	0.34	0.32	0.33	0.38	0.57	0.65	1	0.79	0.8
adsRatioLoad		-0.32		0.13		0.22	0.11	0.14	0.45	0.55	0.8	0.79	1	

ed

### **The Question**

### PCA





**The Question** 

## **OPTIMIZE ALL**







# What is engagement?

Assumption

# Engaged users come more often

# Engagement is similar to retention, recurrency, loyalty...

### **User Engagement**

# 4-weeks cohort stickiness

- Qualitative
  - It does check for a consistent recurrency over time
  - It can easily inform about the intensity of the recurrency
- Quantitative:
  - Shows nice properties such as shape, variance, correlation, etc...





Assumption

# Engaged users navigate different

### **Recurrent vs non recurrent user**

- Recurrent users consume more content and more often
  - Reading time is 35% larger in recurrent users
  - Pageviews / session is 11% larger in recurrent users
- This is consistent across many segments and publishers



#### **Validate Assumption**

### **Recurrent users segment**



# **Reframing the Question**

I want to know how to measure the **success** of UX changes....

- I. Success means that users navigate better
- 2. Engaged / recurrent users navigate better
- 3. Which content consumption feature defines better engagement / recurrence?

I want to know how to measure the **which content consumption metric is the best predictor of engagement** 

# Framing the problem into Machine Learning

- For each session we would predict if that session belongs to a user that is engaged or not engaged
- The feature that provides higher predicting power will be the measure of success
- This boils down to a variable importance analysis of a binary classification problem

# **Binary Classification Problem**

- Target variable is binary 4-week cohort stickiness:
  - {1} if sessions in 2 or more different weeks
  - {0} if less than 2 sessions in different weeks
- Features
  - Base features: Publisher name, acquisition channel of the user, landing page, country, os, os version, network....
  - Content consumption features: pv, reading time, scroll, and many more...
- o Data
  - 275M sessions over 23 publishers

MONTHLY_SESSIONS	11548227	TOTAL_ENGAGED_READING_TIME_3	88909543.6	ENGAGED_READING_TIME_3_PER_USER
MONTHLY_USERS	3104381	TOTAL_ENGAGED_READING_TIME_5	88463993	ENGAGED_READING_TIME_5_PER_USER
MONTHLY_RVR	0.66	TOTAL_ENGAGED_READING_TIME_10	86996273.25	ENGAGED_READING_TIME_10_PER_USER
MONTHLY_RSR	0.68	AVG_CONTENT_LENGTH_PX	6542.998573	CONTENT_LENGTH_PX_PER_USER
MONTHLY_SPU	3.72	MEDIAN_CONTENT_LENGTH_PX	6354	CONTENT_SCROLL_PX_PER_USER
WEEKLY_SESSIONS	2668609	AVG_CONTENT_SCROLL_PX	1190.240884	NORMALIZED_PV_PER_SESSION
WEEKLY_USERS	971738	MEDIAN_CONTENT_SCROLL_PX	902	NORMALIZED_READING_TIME_PER_SESSION
WEEKLY_RVR	0.65	AVG_CONTENT_CONSUMPTION	0.18	NORMALIZED_EPV_3_PER_SESSION
WEEKLY_RSR	0.5	MEDIAN_CONTENT_CONSUMPTION	0.14	NORMALIZED_EPV_5_PER_SESSION
WEEKLY_SPU	2.75	PV_PER_SESSION	2.96	NORMALIZED_EPV_10_PER_SESSION
RETENTION_COHORT_USERS	144365	READING_TIME_PER_SESSION	116.44	NORMALIZED_ENGAGED_READING_TIME_3_PER_SESSION
D7_RETAINED_USERS	71185	EPV_3_PER_SESSION	1.78	NORMALIZED_ENGAGED_READING_TIME_5_PER_SESSION
D28_RETAINED_USERS	94014	EPV_5_PER_SESSION	1.63	NORMALIZED_ENGAGED_READING_TIME_10_PER_SESSION
D7_RETENTION	0.49	EPV_10_PER_SESSION	1.37	NORMALIZED_CONTENT_SCROLL_PX_PER_SESSION
D28_RETENTION	0.65	ENGAGED_READING_TIME_3_PER_SESSION	115.8	NORMALIZED_PV_PER_USER
D7_EXACT_RETENTION	0.192	ENGAGED_READING_TIME_5_PER_SESSION	115.22	NORMALIZED_READING_TIME_PER_USER
D28_EXACT_RETENTION	0.104	ENGAGED_READING_TIME_10_PER_SESSION	113.3	NORMALIZED_EPV_3_PER_USER
NAVIGATION_SESSIONS	767810	CONTENT_LENGTH_PX_PER_SESSION	0.01	NORMALIZED_EPV_5_PER_USER
NAVIGATION_USERS	616492	CONTENT_SCROLL_PX_PER_SESSION	0	NORMALIZED_EPV_10_PER_USER
TOTAL_PV	2274410	PV_PER_USER	3.69	NORMALIZED_ENGAGED_READING_TIME_3_PER_USER
TOTAL_READING_TIME	89406465.15	READING_TIME_PER_USER	145.02	NORMALIZED_ENGAGED_READING_TIME_5_PER_USER
TOTAL_EPV_3	1367356	EPV_3_PER_USER	2.22	NORMALIZED_ENGAGED_READING_TIME_10_PER_USER
TOTAL_EPV_5	1254345	EPV_5_PER_USER	2.03	NORMALIZED_CONTENT_SCROLL_PX_PER_USER
TOTAL_EPV_10	1054351	EPV_10_PER_USER	1.71	

144.22 143.5 141.12 0.01

0

3.645031542 143.3882684 2.191982208 2.007228846 1.687032658

142.6001861

141.8859085

139.5215811

4.543981937 178.582696 2.733753513 2.499850762 2.105769344 177.5975328 176.71091 173.7800755

0



## Variable Importance

- Random forest perform variable <u>importance</u> analysis at (nearly) no cost.
- This method present several issues: <u>1</u>, <u>2</u>, and <u>3</u>
  - Trees are biased towards categorical features with large number of levels
  - Collinear / monotonic features have a un realistic feature importance score
  - One must use the permutation feature importance



## **Feature Selection**

(single) stepwise forward feature selection with repetition

### 1. Repeat several times

- a. Fit and evaluate a classifier that uses only the **base features**
- b. For each feature in **content consumption features list** 
  - i. Add feature to the model
  - ii. Fit the best parameters for the model by CV
  - iii. Measure the increase in accuracy
- c. Compare accuracy increase of all features and select the one with larger increase
- 2. List the winning ratio of each feature

### **TOP-10 features**

	Content Consumption Metric	Pct Winning Ratio		$\sim$	4
<	TOTAL_ENGAGED_READING_TIME_3	66.2%	>5	winner	Z
	TOTAL_ENGAGED_READING_TIME_5	63.8%	~	~~~	
	TOTAL_READING_TIME	56.2%			
	VIEW_PORTS_SCROLLED	51.9%			
	PCT_CONTENT_SCROLLED	48.8%			
	NORMALIZED_READING_TIME	47.7%			
	TOTAL_EPV_3	47.3%			
	TOTAL_EPV_5	45.0%			
	TOTAL_PV	45.0%			
	TOTAL_EPV_10	38.5%			

# Magic





# **Questions?**