
Different Approaches to
Shiny App Development

By Andrés F. Quintero

Who am I?

● Software Engineer from Colombia
● Specialise in building Shiny Apps
● Currently work building Shiny Applications for use in

healthcare institutions
● Free/Open Source advocate and enthusiast

andresquinterom

andyquinterom

What is this presentation about?

● The different approaches to server-side logic inside Shiny Applications.
● Geared toward Shiny developers looking to learn about how different teams

or people could write Shiny Apps.
● Three different methods I have personally used extensively.

What do I mean by approach?

● Consistency and restrictions

“Functional” approach

● Reactives are immutable and “pre-defined”.

Benefits to the functional approach

● Most predictable
● Clean reactive graph
● “Cleaner” code

Downsides to functional approach

● Can be hard to manage non-linear reactive graphs.

Imperative Approach

Saves state in reactive values.

Benefits of imperative approach

● Easier to manage non-linear workflows
● Reactives are mutable and can be created

dynamically

Downsides to imperative approach

● “Complicated” reactive graphs.
● If not managed carefully, bugs can

creep in.
● Keeping track of messy data gets

hard.

Object oriented approach

Data is stored in objects which can be accessed from anywhere in the app
(Objects are not reactive).

Benefits of the object oriented approach

● “Easier” to organize data
● Data can be shared throughout the application without interfering with the

reactive graph
● Great for bigger apps with many data sources and types.

Downsides to the object oriented approach

● Can be more work.
● Works against the general notion of how R code is usually written.
● Does not interfere the reactive graph.
● Harder to mix with other approaches.

Initialize a new object

Set the data to that which the user selected

Init triggers

Run when “selected_dataset” is triggered

Trigger “selected_dataset”

Set selected variables to those in input$variables
and trigger “selected_variables”

Render the data when “selected_variables” is triggered

Conclusion

● Most approaches are completely valid for
production grade applications.

● It is important to determine which approach is
easier to work with for a particular project.

● Consistency is key, code is understandable as
long as it is consistent.

● Software Engineer
● Specialise in building Shiny Apps
● Currently work building Shiny Applications for use in

healthcare institutions
● Free/Open Source advocate and enthusiast

andresquinterom

andyquinterom

